【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3x軸交于A(1,0),B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.

1)求直線AC及拋物線的解析式,并求出D點的坐標;

2)若P為線段BD上的一個動點,過點PPMx軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標;

3)若點Px軸上一個動點,過P作直線1AC交拋物線于點Q,試探究:隨著P點的運動,在拋物線上是否存在點Q,使以點A、P、Q、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點Q的坐標;若不存在,請說明理由.

【答案】1y=3x+3,y=x2+2x+3,頂點D的坐標為(1,4);(2)四邊形PMAC的面積的最大值為,此時點P的坐標為();(3)點Q的坐標為(2,3)(1,﹣3)(1,﹣3)

【解析】

1)先求出點C坐標,然后利用待定系數(shù)法即可求出直線AC及拋物線的解析式,把拋物線的一般式轉(zhuǎn)化為頂點式即可求出D點的坐標;

2)先根據(jù)待定系數(shù)法求出直線BD的解析式,設點P的橫坐標為p,然后根據(jù)S四邊形PMAC=SOAC+S梯形OMPC即可得出S四邊形PMACp的關系式,再根據(jù)二次函數(shù)的性質(zhì)解答即可;

3)由題意得PQACPQ=AC,設點P的坐標為(x,0),當點Qx軸上方時,則點Q的坐標為(x+1,3),把點Q的坐標代入拋物線的解析式即可求出x,進而可得點Q坐標;當點Qx軸下方時,則點Q的坐標為(x1,﹣3),同樣的方法求解即可.

1)∵拋物線y=ax2+bx+3y軸交于點C,

∴點C(03),

設直線AC的解析式為y=k1x+b1(k10)

∵點A(10),點C(0,3),

,解得:

∴直線AC的解析式為y=3x+3

∵拋物線y=ax2+bx+3x軸交于A(1,0),B(3,0)兩點,

,解得:,

∴拋物線的解析式為y=x2+2x+3

y=x2+2x+3=(x1)2+4,

∴頂點D的坐標為(14);

2)設直線BD的解析式為y=kx+b

∵點B(3,0),點D(1,4),

,得,

∴直線BD的解析式為y=2x+6

P為線段BD上的一個動點,

∴設點P的坐標為(p,﹣2p+6)

OA=1OC=3,OM=p,PM=2p+6,

S四邊形PMAC=SOAC+S梯形OMPC=p2p=(p)2,

1p3,

∴當p時,四邊形PMAC的面積取得最大值為,此時點P的坐標為();

3)∵直線lAC,以點A、PQ、C為頂點的四邊形是平行四邊形,

PQACPQ=AC

設點P的坐標為(x,0),由A(1,0)C(0,3),

當點Qx軸上方時,則點Q的坐標為(x+1,3),

此時,﹣(x+1)2+2(x+1)+3=3

解得:x1=1(舍去),x2=1,

∴點Q的坐標為(23);

當點Qx軸下方時,則點Q的坐標為(x1,﹣3),

此時,﹣(x1)2+2(x1)+3=3,

整理得:x24x3=0,

解得:x1=2,x2=2

∴點Q的坐標為(1,﹣3)(1,﹣3)

綜上所述:點Q的坐標為(2,3)(1,﹣3)(1,﹣3)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+c與兩坐標軸分別交于點A、B、C,直線y=﹣x+4經(jīng)過點B,與y軸交點為DM3,﹣4)是拋物線的頂點.

1)求拋物線的解析式.

2)已知點N在對稱軸上,且AN+DN的值最。簏cN的坐標.

3)在(2)的條件下,若點E與點C關于對稱軸對稱,請你畫出△EMN并求它的面積.

4)在(2)的條件下,在坐標平面內(nèi)是否存在點P,使以A、B、NP為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點DAB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且,連接GO并延長交⊙O于點F,連接BF

1)求證:①AOAG,②BF是⊙O的切線.

2)若BD6,求圖形中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設一次函數(shù)y1=x+a+b和二次函數(shù)y2=x(x+a)+b

(1)若y1,y2的圖象都經(jīng)過點(-2,1),求這兩個函數(shù)的表達式;

(2)求證:y1,y2的圖象必有交點;

(3)若a0,y1,y2的圖象交于點(x1,m),(x2,n)(x1x2),設(x3n)為y2圖象上一點(x3x2),求x3-x1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A1的坐標為(1,0),以OA1為直角邊作RtOA1A2,并使∠A1OA2=60°,再以OA2為直角邊作RtOA2A3,并使∠A2OA3=60°,再以OA3為直角邊作RtOA3A4,并使∠A3OA4=60°…按此規(guī)律進行下去,則點A2020的坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,G、AB在同一直線上,點EAD上,連接DG,BE

1)證明:BEDG;

2)發(fā)現(xiàn):當正方形AEFG繞點A旋轉(zhuǎn),如圖②所示,判斷BEDG的數(shù)量關系和位置關系,并說明理由;

3)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,判斷BEDG的數(shù)量關系和位置關系是否與(2)的結(jié)論相同,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個)

2

4

5

3

1

關于這15名同學所捐款的數(shù)額,下列說法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某超市從底樓到二樓有一自動扶梯,圖2是側(cè)面示意圖已知自動扶梯AB的長度是125米,MN是二樓樓頂,MNPQ,C是MN上處在自動扶梯頂端B點正上方的一點,BCMN,在自動扶梯底端A處測得C點的仰角CAQ為45°,坡角BAQ為37°,求二樓的層高BC精確到01米).(參考數(shù)據(jù):sin37°≈060,cos37°≈080,tan37°≈075

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的提高和環(huán)境的不斷改善,帶動了旅游業(yè)的發(fā)展.某市旅游景區(qū)有AB,C,D四個著名景點,該市旅游部門統(tǒng)計繪制出2019年游客去各景點情況統(tǒng)計圖,根據(jù)給出的信息解答下列問題:

12019年該市旅游景區(qū)共接待游客   萬人,扇形統(tǒng)計圖中C景點所對應的圓心角的度數(shù)是   度;

2)把條形統(tǒng)計圖補充完整;

3)甲,乙兩位同學去該景區(qū)旅游,用樹狀圖或列表法,求甲,乙兩位同學在A,BD三個景點中,同時選擇去同一景點的概率.

查看答案和解析>>

同步練習冊答案