解:(1)∵∠ACB=∠ADE=90°,點F為BE中點,

∴DF=

BE,CF=

BE,
∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,
∴∠ABC=45°
∵BF=DF,
∴∠DBF=∠BDF,
∵∠DFE=∠ABE+∠BDF,
∴∠DFE=2∠DBF,
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,
∴DF=CF,且DF⊥CF.
(2)(1)中的結論仍然成立.
證明:如圖,此時點D落在AC上,延長DF交BC于點G.
∵∠ADE=∠ACB=90°,
∴DE∥BC.

∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F為BE中點,
∴EF=BF.
∴△DEF≌△GBF.
∴DE=GB,DF=GF.
∵AD=DE,
∴AD=GB,
∵AC=BC,
∴AC-AD=BC-GB,
∴DC=GC.
∵∠ACB=90°,
∴△DCG是等腰直角三角形,
∵DF=GF.
∴DF=CF,DF⊥CF.
(3)延長DF交BA于點H,
∵△ABC和△ADE是等腰直角三角形,
∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°,
∵由旋轉可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,
∴∠AEB=∠CBE,
∴∠DEF=∠HBF.
∵F是BE的中點,
∴EF=BF,
∴△DEF≌△HBF,
∴ED=HB,
∵AC=

,在Rt△ABC中,由勾股定理,得
AB=4,
∵AD=1,
∴ED=BH=1,
∴AH=3,在Rt△HAD中由勾股定理,得
DH=

,
∴DF=

,
∴CF=

∴線段CF的長為

.

分析:(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據(jù)∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.
(2)延長DF交BC于點G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據(jù)AD=DE,AB=BC,得到BD=BG又因為∠ABC=90°,所以DF=CF且DF⊥BF.
(3)延長DF交BA于點H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據(jù)旋轉條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC=

,可以求出AB的值,進而可以根據(jù)勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
點評:主要考查了旋轉的性質,等腰三角形和全等三角形的判定,及勾股定理的運用.要掌握等腰三角形和全等三角形的性質及其判定定理并會靈活應用是解題的關鍵.