【題目】在平面直角坐標(biāo)系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C( 2).

①當(dāng)時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;

②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;

(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

【答案】(1)①35;②②t =-3或6;(2)

【解析】試題分析:(1)①由矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形,得出最優(yōu)覆蓋矩形的長為:2+5=7,寬為3+2=5,即可得出結(jié)果;

②由定義可知,t=-3或6;

(2)OD所在的直線交雙曲線于點E,矩形OFEG是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形,OD所在的直線表達(dá)式為y=x,得出點E的坐標(biāo)為(2,2),⊙H的半徑最小r=,當(dāng)點E的縱坐標(biāo)為1時,⊙H的半徑最大r=,即可得出結(jié)果;

試題解析:

解:(1:(1)①∵A(-2,3),B(5,0),C(2,-2),矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形,
∴最優(yōu)覆蓋矩形的長為:2+5=7,寬為3+2=5,
∴最優(yōu)覆蓋矩形的面積為:7×5=35;

②∵點A,B,C的最優(yōu)覆蓋矩形的面積為40,
∴由定義可知,t=-36,

2)如圖1,OD所在的直線交雙曲線于點E,矩形OFEG是點O,DE的一個面積最小的最優(yōu)覆蓋矩形,

∵點D1,1),

OD所在的直線表達(dá)式為yx,

∴點E的坐標(biāo)為(22),

OE=,

∴⊙H的半徑r ,

如圖2,

∵當(dāng)點E的縱坐標(biāo)為1時,1,解得x4,

OE==,

∴⊙H的半徑r =,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店購進(jìn)一種商品進(jìn)行銷售,進(jìn)價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將商品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降),每月商品銷量為y(件),月利潤為w(元).

1)直接寫出yx之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售價格是多少時才能使月利潤最大?最大月利潤時多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC中,AB=AC,∠B=α.
(1)如圖1,點D,E分別在邊AB,AC上,線段DE的垂直平分線MN交直線BC于點M,交DE于點N,求證:BD+CE=BC.需補充條件∠EMN= (用含α的式子表示)補充條件后并證明;

(2)把(1)中的條件改為點D,E分別在邊BA、AC延長線上,線段DE的垂直平分線MN交直線BC于點M,交DE于點N(如圖2),并補充條件∠EMN=(用含α的式子表示),通過觀察或測量,猜想線段BD,CE與BC之間滿足的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋裝有若干個紅、黃、藍(lán)、綠四種顏色的小球,小球除顏色外完全相同,為估計該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機摸出一球記下顏色并放回,重復(fù)多次試驗,匯總實驗結(jié)果繪制如圖不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

根據(jù)以上信息解答下列問題:

(1)求實驗總次數(shù),并補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?

(3)已知該口袋中有10個紅球,請你根據(jù)實驗結(jié)果估計口袋中綠球的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“夕陽紅”養(yǎng)老院共有普通床位和高檔床位共500張.已知今年一月份入住普通床位老人300人,入住高檔床位老人90人,共計收費51萬元;今年二月份入住普通床位老人350人,入住高檔床位老人100人,共計收費58萬元.

(1)求普通床位和高檔床位每月收費各多少元?

(2)根據(jù)國家養(yǎng)老政策規(guī)定,為保障普通居民的養(yǎng)老權(quán)益,所有實際入住高檔床位數(shù)不得超過實際入住普通床位數(shù)的三分之一;另外為扶持養(yǎng)老企業(yè)發(fā)展國家民政局財政對每張入住的床位平均每年都是給予養(yǎng)老院企業(yè)2400元的補貼.經(jīng)測算,該養(yǎng)老院普通床位的運營成本是每月1200元/張,入住率為90%;高檔床位的運營成本是每月2000元/張,入住率為70%.問該養(yǎng)老院應(yīng)該怎樣安排500張床的普通床位和高檔床位數(shù)量,才能使每月的利潤最大,最大為多少元?(月利潤=月收費-月成本+月補貼)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(x+2)(x-5=18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2a=5,2b=3,求2a+b+3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、CD、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點EBDCG交于點H,連接FH,下列結(jié) 論:①AE=DF;②FH∥AB③△DGH∽△BGE;當(dāng)CG⊙O的直徑時,DF=AF.其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織同學(xué)們春游,如果全部租45座的車,則有15人沒座位;如果全部租60座的車,那么空出一輛車,其余車剛好座滿,設(shè)有x輛車,那么可列出一元一次方程為_____

查看答案和解析>>

同步練習(xí)冊答案