中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽(tīng)電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)此次抽樣調(diào)查中,共調(diào)查了  名學(xué)生;

(2)將圖1、圖2補(bǔ)充完整;

(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹(shù)狀圖法).


       解:(1)100÷50%=200,

所以調(diào)查的總?cè)藬?shù)為200名;

故答案為200;

(2)B類人數(shù)=200×25%=50(名);D類人數(shù)=200﹣100﹣50﹣40=10(名);

C類所占百分比=×100%=20%,D類所占百分比=×100%=5%,

如圖:

(3)畫(huà)樹(shù)狀圖為:

共有12種等可能的結(jié)果數(shù),其中兩名學(xué)生為同一類型的結(jié)果數(shù)為4,

所以這兩名學(xué)生為同一類型的概率==


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖是由6個(gè)相同的小立方塊搭成的幾何體,這個(gè)幾何體的左視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,AB=AC=15,點(diǎn)DBC邊上的一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=∠α,DEAB點(diǎn)E,且tan∠α=.有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時(shí),△ACD與△DBE等;③△BDE為直角三角形時(shí),BD為12或;④0<BE,其中正確的結(jié)論是        (填入正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


因式分解:3a2﹣6a= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


“梅花朵朵迎春來(lái)”,下面四個(gè)圖形是由小梅花擺成的一組有規(guī)律的圖案,按圖中規(guī)律,第n個(gè)圖形中小梅花的個(gè)數(shù)是       

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.

(1)求此二次函數(shù)解析式;

(2)連接DC、BC、DB,求證:△BCD是直角三角形;

(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


.下列一元二次方程中,有兩個(gè)相等實(shí)數(shù)根的是( 。

    A. x2﹣8=0 B.   2x2﹣4x+3=0               C.                             9x2+6x+1=0     D. 5x+2=3x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


問(wèn)題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.

[探究發(fā)現(xiàn)]

小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.

根據(jù)“邊角邊”,可證△CEH≌   ,得EH=ED.

在Rt△HBE中,由   定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是   

[實(shí)踐運(yùn)用]

(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù);

(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長(zhǎng)及MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


.如圖,已知△ABC中,AB=5,AC=3,點(diǎn)D在邊AB上,且∠ACD=∠B,則線段AD的長(zhǎng)為  

查看答案和解析>>

同步練習(xí)冊(cè)答案