【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,D,C,其中AB=2,BD=3,DC=1,如圖所示,設(shè)點(diǎn)A,B,D,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn).寫(xiě)出點(diǎn)A,D,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;
(2)①若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=x,p=﹣71,求x.
②此時(shí),若數(shù)軸上存在一點(diǎn)E,使得AE=2CE,求點(diǎn)E所對(duì)應(yīng)的數(shù)(直接寫(xiě)出答案).
【答案】(1)A點(diǎn)對(duì)應(yīng)的數(shù)為-2;D點(diǎn)對(duì)應(yīng)的數(shù)為3;C點(diǎn)對(duì)應(yīng)的數(shù)為4;p=5;(2)①15;②-9或-17.
【解析】
(1)根據(jù)以B為原點(diǎn),則A,D,C所對(duì)應(yīng)的數(shù)分別為:-2,3,4,進(jìn)而得到p的值;
(2)①用x的代數(shù)式分別表示A,B,D,C所對(duì)應(yīng)的數(shù),根據(jù)題意列方程解答即可;②根據(jù)題意可知A表示的數(shù)為-21, C點(diǎn)表示的數(shù)為-15,然后分情況討論E的位置求解即可.
(1)解:∵B為原點(diǎn),AB=2,則A點(diǎn)對(duì)應(yīng)的數(shù)為-2;BD=3,則D點(diǎn)對(duì)應(yīng)的數(shù)為3;DC=1,則C點(diǎn)對(duì)應(yīng)的數(shù)為3+1=4,則P=-2+3+4=5.
(2)解: ①由題意,A,B,D,C表示的數(shù)分別為:-6-x,-4-x,-1-x,-x,
則:-6-x-4-x-1-x-x=-71,
解得:x=15;
②由上題知:A表示的數(shù)為-15-6=-21, C點(diǎn)表示的數(shù)為-15,
1)當(dāng)E在AC之間時(shí),如下圖
∵AC=-15-(-21)=6,且AE=2CE,
解得CE=2,
∴此時(shí)E點(diǎn)表示的數(shù)為-17;
2)當(dāng)E在C的右邊時(shí),如下圖
∵AC=-15-(-21)=6,且AE=2CE,
解得CE=6,
∴此時(shí)E點(diǎn)表示的數(shù)為-9,
綜上:點(diǎn)E所對(duì)應(yīng)的數(shù)為-9或-17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.
(1)數(shù)軸上點(diǎn)A表示的數(shù)為 .
(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為OABC,移動(dòng)后的長(zhǎng)方形OABC與原長(zhǎng)方形OABC重疊部分(如圖8中陰影部分)的面積記為S.
①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A表示的數(shù)是 .
②設(shè)點(diǎn)A的移動(dòng)距離AA'=x
(ⅰ)當(dāng)S=4時(shí),求x的值;
(ⅱ)D為線段AA的中點(diǎn),點(diǎn)E在找段OO'上,且OO'=3OE,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度數(shù);
(2)若∠AOD與∠BOD互補(bǔ),且∠DOE=35°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是平面直角坐標(biāo)系的原點(diǎn).在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,1),B(3,1),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式;
(2)過(guò)P作PD⊥OA于D,以點(diǎn)P為圓心,PD為半徑作⊙P,⊙P在點(diǎn)P的右側(cè)與x軸交于點(diǎn)Q.
①則P點(diǎn)的坐標(biāo)為_____,Q點(diǎn)的坐標(biāo)為_____;(用含t的代數(shù)式表示)
②試求t為何值時(shí),⊙P與四邊形OABC的兩邊同時(shí)相切;
③設(shè)△OPD與四邊形OABC重疊的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD的對(duì)角線AC=8,BD=6,且,P、Q、R、S分別是AB、BC、CD、DA的中點(diǎn),則PR2+QS2的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:射線OP∥AE
(1)如圖1,∠AOP的角平分線交射線AE與點(diǎn)B,若∠BOP=58°,求∠A的度數(shù).
(2)如圖2,若點(diǎn)C在射線AE上,OB平分∠AOC交AE于點(diǎn)B,OD平分∠COP交AE于點(diǎn)D,∠ADO=39°,求∠ABO﹣∠AOB的度數(shù).
(3)如圖3,若∠A=m,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,∠Bn﹣1OP的角平分線OBn,其中點(diǎn)B,B1,B2,…,Bn﹣1,Bn都在射線AE上,試求∠ABnO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形ABCD中,,點(diǎn)E,F分別在BC、CD上,,試探究面積的最小值。
下面是小麗的探究過(guò)程:
(1)延長(zhǎng)EB至G,使,連接AG,可以證明.請(qǐng)完成她的證明;
(2)設(shè),,
①結(jié)合(1)中結(jié)論,通過(guò)計(jì)算得到與x的部分對(duì)應(yīng)值。請(qǐng)求出表格中a的值:(寫(xiě)出解答過(guò)程)
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
10 | 8.18 | 6.67 | 5.38 | 4.29 | 3.33 | a | 1.76 | 1.11 | 0.53 | 0 |
②利用上表和(1)中的結(jié)論通過(guò)描點(diǎn)、連線可以分別畫(huà)出函數(shù)、的圖像、請(qǐng)?jiān)趫D②中完善她的畫(huà)圖;
③根據(jù)以上探究,估計(jì)面積的最小值約為(結(jié)果估計(jì)到0.1)。
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,,D是AC邊上一點(diǎn),且,聯(lián)結(jié)BD,點(diǎn)E、F分別是BC、AC上兩點(diǎn)(點(diǎn)E不與B、C重合),,AE與BD相交于點(diǎn)G.
(1)求證:BD平分;
(2)設(shè),,求與之間的函數(shù)關(guān)系式;
(3)聯(lián)結(jié)FG,當(dāng)是等腰三角形時(shí),求BE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com