【題目】如圖,是銳角的外接圓,的切線,切點(diǎn)為,,連結(jié),的平分線,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)的外心;③;④若點(diǎn),分別是上的動(dòng)點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上)

【答案】

【解析】

如圖1,連接,通過切線的性質(zhì)證,進(jìn)而由 ,即可由垂徑定理得到F是的中點(diǎn),根據(jù)圓周角定理可得,可得平分;由三角形的外角性質(zhì)和同弧所對的圓周角相等可得,可得,可得點(diǎn)得外心;如圖,過點(diǎn)C作 的延長線與點(diǎn)通過證明,可得;如圖,作點(diǎn)關(guān)于的對稱點(diǎn) ,當(dāng)點(diǎn)在線段上,且時(shí),

如圖,連接

的切線,

,∵

,且為半徑

垂直平分

平分,故正確

點(diǎn)的外心,故正確;

如圖,過點(diǎn)C作 的延長線與點(diǎn)

,故正確;

如圖,作點(diǎn)關(guān)于的對稱點(diǎn) ,

點(diǎn)與點(diǎn)關(guān)于對稱,

當(dāng)點(diǎn)在線段上,且時(shí),

的最小值為;故正確.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,AEBCCB延長線于E,CFAEAD延長線于點(diǎn)F

1)求證:四邊形AECF為矩形;

2)連接OE,若AE=4,AD=5,求tanOEC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺,已知,滑臺的高米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.

1)求新坡面的坡角及的長;

2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻米。請問新的設(shè)計(jì)方案能否通過,試說明理由(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,分別是的中點(diǎn),分別在上, ,連結(jié),則重疊部分六邊形的周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線有兩個(gè)不同的交點(diǎn).下列結(jié)論:①;②當(dāng)時(shí),有最小值;③方程有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則;其中正確的結(jié)論的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某林業(yè)部門統(tǒng)計(jì)某種樹苗在本地區(qū)一定條件下的移植成活率,結(jié)果如表:

移植的棵數(shù)

300

700

1000

5000

15000

成活的棵數(shù)

280

622

912

4475

13545

成活的頻率

0.933

0.889

0.912

0.895

0.903

根據(jù)表中的數(shù)據(jù),估計(jì)這種樹苗移植成活的概率為_____(精確到0.1);如果該地區(qū)計(jì)劃成活4.5萬棵幼樹,那么需要移植這種幼樹大約_____萬棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠B90°,∠C30°,動(dòng)點(diǎn)P從點(diǎn)B開始沿邊BA、AC向點(diǎn)C以恒定的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以恒定的速度移動(dòng),兩點(diǎn)同時(shí)到達(dá)點(diǎn)C,設(shè)BPQ的面積為ycm2).運(yùn)動(dòng)時(shí)間為xs),yx之間關(guān)系如圖2所示,當(dāng)點(diǎn)P恰好為AC的中點(diǎn)時(shí),PQ的長為( 。

A.2B.4C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-x2bxcb,c為常數(shù))的圖象經(jīng)過點(diǎn)(23),(3,0).

1)則b=,c=;

2)該二次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為;

3)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;

4)根據(jù)圖象,當(dāng)-3x2時(shí),y的取值范圍是.

查看答案和解析>>

同步練習(xí)冊答案