【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:)依先后次序記錄如下:,,,,,

將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?

出租車在行駛過程中,離鼓樓最遠的距離是多少?

出租車按物價部門規(guī)定,起步價(不超過千米)為元,超過千米的部分每千米的價格為元,司機一個下午的營業(yè)額是多少?

【答案】出租車離鼓樓出發(fā)點,出租車在鼓樓;離鼓樓最遠的距離是司機一個下午的營業(yè)額是元.

【解析】

1)把記錄的數(shù)字加起來,看結果是正還是負,就可確定是向東還是西

2)分步求出記錄的數(shù)字的結果,比較絕對值的大小即可求解;

3)求出記錄數(shù)字的絕對值的和,再減去3×10,再用差乘以1.4把它們的積加上108元即可求解

1+935+48+6364+10=0

故出租車離鼓樓出發(fā)點0km,出租車在鼓樓

2+93=6,65=11+4=5,58=﹣3,﹣3+6=3,33=0,06=﹣6,﹣64=﹣10,﹣10+10=0

故離鼓樓最遠的距離是10km

3)﹙|+9|+|3|+|5|+|+4|+|8|+|+6|+|3|+|6|+|4|+|+10|3×10×1.4+8×10=39.2+80=119.2(元)

故司機一個下午的營業(yè)額是119.2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準備運給甲、乙兩地的承包商進行包銷.該基地用大、小兩種貨車共18輛恰好能一次性運完這批紅薯,已知這兩種貨車的載重量分別為14/噸和8/輛,運往甲、乙兩地的運費如下表:

車型

運費

運往甲地/(元/輛)

運往乙地/(元/輛)

大貨車

720

800

小貨車

500

650

(1)求這兩種貨車各用多少輛;

(2)如果安排10輛貨車前往甲地,其余貨車前往乙地,其中前往甲地的大貨車為a輛,總運費為w元,求w關于a的函數(shù)關系式;

(2)在(2)的條件下,若甲地的承包商包銷的紅薯不少于96噸,請你設計出使總運費最低的貨車調(diào)配方案,并求出最低總運費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是雙曲線y= 在第二象限分支上的任意一點,點B、點C、點D分別是點A關于x軸、坐標原點、y軸的對稱點.若四邊形ABCD的面積是8,則k的值為( )

A.﹣1
B.1
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)、、、…、的每個數(shù)字前添上“+”“-”,使得算出的結果是一個最小的非負數(shù),請寫出符合條件的式子:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點OAC邊上的一個動點,過點O作直線MN∥BC,MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.

(1)判斷OEOF的大小關系?并說明理由?

(2)當點O運動何處時,四邊形AECF是矩形?并說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列各數(shù)填入相應的集合中:

—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,

有理數(shù)集合:{ };

無理數(shù)集合:{ };

整數(shù)集合:{ };

分數(shù)集合:{ }

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,點E、F分別在AD、BC上,且ED=BF,EF與AC相交于點O,求證:OA=OC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初二年級數(shù)學考試,(滿分為100分,該班學生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:

分組

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~100.5

合計

頻數(shù)

2

a

20

16

4

50

頻率

0.04

0.16

0.40

0.32

b

1

(1)頻數(shù)、頻率分布表中a=  ,b=  ;(答案直接填在題中橫線上)

(2)補全頻數(shù)分布直方圖;

(3)若該校八年級共有600名學生,且各個班級學生成績分布基本相同,請估計該校八年級上學期期末考試成績低于70分的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

同步練習冊答案