【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
【答案】(1)直線l與⊙O相切;(2)證明見(jiàn)解析;(3).
【解析】
試題分析:(1)連接OE、OB、OC.由題意可證明,于是得到∠BOE=∠COE,由等腰三角形三線合一的性質(zhì)可證明OE⊥BC,于是可證明OE⊥l,故此可證明直線l與⊙O相切;
(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對(duì)等邊證明BE=EF即可;
(3)先求得BE的長(zhǎng),然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長(zhǎng),于是可得到AF的長(zhǎng).
試題解析:(1)直線l與⊙O相切.
理由:如圖1所示:連接OE、OB、OC.
∵AE平分∠BAC,∴∠BAE=∠CAE,∴,∴∠BOE=∠COE.
又∵OB=OC,∴OE⊥BC.
∵l∥BC,∴OE⊥l,∴直線l與⊙O相切.
(2)∵BF平分∠ABC,∴∠ABF=∠CBF.
又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.
又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB,∴BE=EF.
(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB,∴,即,解得;AE=,∴AF=AE﹣EF=﹣7=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年初,一列CRH5型高速車(chē)組進(jìn)行了“300000公里正線運(yùn)營(yíng)考核”標(biāo)志著中國(guó)高速快車(chē)從“中國(guó)制造”到“中國(guó)創(chuàng)造”的飛躍,將300000用科學(xué)記數(shù)法表示為( )
A.3×106
B.3×105
C.0.3×106
D.30×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店新開(kāi)張,第一天銷(xiāo)售服裝a件,第二天比第一天少銷(xiāo)售14件,第三天的銷(xiāo)售量是第二天的2倍多10件,則這三天銷(xiāo)售了( )件.
A. 3a﹣42 B. 3a+42 C. 4a﹣32 D. 3a+32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AB=10,AC=6,點(diǎn)E、F分別是邊AC、BC上的動(dòng)點(diǎn),過(guò)點(diǎn)E作ED⊥AB于點(diǎn)D,過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G,DG的長(zhǎng)始終為2.
(1)當(dāng)AD=3時(shí),求DE的長(zhǎng);
(2)當(dāng)點(diǎn)E、F在邊AC、BC上移動(dòng)時(shí),設(shè),,
求關(guān)于的函數(shù)解析式。
(3)在點(diǎn)E、F移動(dòng)過(guò)程中,△AED與△CEF能否相似,若能,求AD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(2,1),將點(diǎn)A繞原點(diǎn)O旋轉(zhuǎn)180°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A.(-1,-2)B.(1,-2)C.(-2,-1)D.(2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),CE⊥AD于E,BF∥AC交CE的延長(zhǎng)線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com