如圖,在規(guī)格為8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫(huà)一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),求C點(diǎn)坐標(biāo);
(3)以(2)中△ABC的頂點(diǎn)C為旋轉(zhuǎn)中心,畫(huà)出△ABC旋轉(zhuǎn)180°后所得到的△DEC,連接AE和BD,試判定四邊形ABDE是什么特殊四邊形,并說(shuō)明理由.
精英家教網(wǎng)
分析:(1)A、B兩點(diǎn)位于第二象限內(nèi),根據(jù)第二象限內(nèi)點(diǎn)的坐標(biāo)特征,可以寫(xiě)出A,B兩點(diǎn)的坐標(biāo)分別是:A(-2,4),B(-4,2).
(2)以AB為底的等腰三角形在第二象限有無(wú)數(shù)個(gè),由于題目要求在格點(diǎn)上找,所以有(-4,4),(-2,2)以及(-1,1)三個(gè)點(diǎn),而前兩個(gè)點(diǎn),腰長(zhǎng)為2,不符合要求,所以點(diǎn)C的坐標(biāo)只能是(-1,1),其腰長(zhǎng)為
12+32
=
10

(3)畫(huà)出圖示如圖,根據(jù)(2)中的結(jié)論,可以求出AD=BE,且AC=BC=CD=CE,根據(jù)矩形的判定定理,可以判定四邊形是矩形.
解答:解:(1)根據(jù)圖示,點(diǎn)A和B的坐標(biāo)分別是A(-2,4),B(-4,2).

(2)點(diǎn)C的坐標(biāo)是(-1,1),
根據(jù)圖示可得,腰長(zhǎng)CB=CA=
12+32
=
10

10
是無(wú)理數(shù),符合要求.

(3)畫(huà)出旋轉(zhuǎn)后的圖形如圖所示,
精英家教網(wǎng)
由于旋轉(zhuǎn)180°,所以A、C、D共線,同理,B、C、E共線,
根據(jù)題意知,AC=BC=CD=CE=
10
,
∴AD=BE,
∴四邊形ABDE是矩形.
點(diǎn)評(píng):本題是一個(gè)綜合題,結(jié)合坐標(biāo)系,考查了旋轉(zhuǎn)的知識(shí),同時(shí)還考查了特殊四邊形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:是規(guī)格為8×8的正方形的網(wǎng)格,請(qǐng)你在所給的網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(4,-2),B點(diǎn)坐標(biāo)為(2,-4);
(2)在第四象限的格點(diǎn)上,畫(huà)一點(diǎn)C,使點(diǎn)C與線段組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)為無(wú)理數(shù),則C點(diǎn)坐標(biāo)是
(1,-1)
(1,-1)
,△ABC的周長(zhǎng)是
2
10
+2
2
2
10
+2
2
;
(3)畫(huà)出△ABC以點(diǎn)C為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后的△A1B1C,連接AB1和A1B,試寫(xiě)出四邊形ABA1B1是何特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:是規(guī)格為8×8的正方形的網(wǎng)格,請(qǐng)你在所給的網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(4,-2),B點(diǎn)坐標(biāo)為(2,-4);
(2)在第四象限的格點(diǎn)上,畫(huà)一點(diǎn)C,使點(diǎn)C與線段組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)為無(wú)理數(shù),則C點(diǎn)坐標(biāo)是______,△ABC的周長(zhǎng)是______;
(3)畫(huà)出△ABC以點(diǎn)C為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后的△A1B1C,連接AB1和A1B,試寫(xiě)出四邊形ABA1B1是何特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在規(guī)格為8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫(huà)一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),求C點(diǎn)坐標(biāo);
(3)以(2)中△ABC的頂點(diǎn)C為旋轉(zhuǎn)中心,畫(huà)出△ABC旋轉(zhuǎn)180°后所得到的△DEC,連接AE和BD,試判定四邊形ABDE是什么特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年《海峽教育報(bào)》初中數(shù)學(xué)綜合練習(xí)(二)(解析版) 題型:解答題

如圖,在規(guī)格為8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫(huà)一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),求C點(diǎn)坐標(biāo);
(3)以(2)中△ABC的頂點(diǎn)C為旋轉(zhuǎn)中心,畫(huà)出△ABC旋轉(zhuǎn)180°后所得到的△DEC,連接AE和BD,試判定四邊形ABDE是什么特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案