【題目】如圖,一次函數(shù)y1kx+2的圖象與y軸交于點C,與反比例函數(shù)y2的圖象交于A、B兩點,點B的橫坐標為﹣2,SAOC1tan=∠AOC

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)圖象直接寫出kx+20時自變量x的取值范圍.

【答案】1y12x+2y2;(2)自變量x的取值范圍是﹣2x0x1

【解析】

1)過AAHy軸于H,在中令x0得出y2,求出C的坐標,根據(jù)三角形的面積公式求出AH,根據(jù)解直角三角形求出OH,得出A的坐標,分別把A的坐標代入一次函數(shù)和反比例函數(shù)的解析式即可求出答案;(2)根據(jù)AB點的橫坐標結(jié)合圖象即可得出答案.

1)過AAHy軸于H,

∵在y1kx+2中,令x0y2

C0,2),

SAOC×2×AH1,

AH1,

RtAOH中,tanAOC,

OH4,

A14),

A的坐標代入y1kx+2k2

∴一次函數(shù)的解析式是y12x+2;

A的坐標代入y2得:m4

∴反比例函數(shù)的解析式是y2;

2)∵A1,4),B點的橫坐標是﹣2,

kx+20時自變量x的取值范圍是﹣2x0x1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°AC=6,BC=8.把△ABCAB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′A′C′AB于點E.若AD=BE,則△A′DE的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x24(k1)x4k20有兩個實數(shù)根x1、x2

(1) 求k的取值范圍

(2) 若x1x22|x1x2|=4,求k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時,若同時具有圖1所示的A、BE三個接觸點,該球的大小就符合要求.圖2是過球心OAB、E三點的截面示意圖,求這種鐵球的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線ly=﹣x1,雙曲線y,在l上取一點A1,過A1x軸的垂線交雙曲線于點B1,過B1y軸的垂線交l于點A2,請繼續(xù)操作并探究:過A2x軸的垂線交雙曲線于點B2,過B2y軸的垂線交l于點A3,…,這樣依次得到l上的點A1,A2A3,…,An,…記點An的橫坐標為an,若a12,則a2018_____;若要將上述操作無限次地進行下去,則a1不可能取的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號.一艘在港口正東方向B處的海警船接到求救信號,測得事故船在它的北偏東37°方向.

1)求海警船距離事故船C的距離BC

2)若海警船以40海里/小時的速度前往救援,求海警船到達事故船C處大約所需的時間.(溫馨提示:sin 53°≈08cos 53°≈06

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,CDAB,BC=1.

(1)如果∠BCD=30,求AC

(2)如果tanBCD,求CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“慈善一日捐”活動中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.

1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學(xué)生參與捐款,請你估計該校學(xué)生的捐款總數(shù).

查看答案和解析>>

同步練習冊答案