精英家教網 > 初中數學 > 題目詳情
如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.點E在底邊BC上,點F在腰AB上.若EF平分等腰梯形ABCD的周長,設BE的長為x,△BEF的面積為y,用含x的代數式表示y,可表示為:______.
梯形的周長為4+2×5+10=24,
由題意:BF+EB=12,即BF+x=12,
∴BF=12-x,作AK⊥BC于K,FG⊥BC于G,
則BK=3,AK=4,
又∵△FBG△ABK,
FG
AK
=
FB
AB

FG
4
=
12-x
5
,
∴FG=
4
5
(12-x).
∴△BEF的面積=
1
2
BE•FG=
1
2
4
5
(12-x)
=-
2
5
x2+
24
5
x

故答案為:y=-
2
5
x2+
24
5
x
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

在梯形ABCD中,ADBC.AB=DC=AD=6,∠ABC=60°,點E、F分別在AD、DC上(點E與A、D不重合);且∠BEF=120°,設AE=x,DF=y.
(1)求BC邊的長;
(2)求出y關于x的函數關系;
(3)利用配方法求x為何值時,y有最大值,最大值為多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知在梯形ABCD中,ADBC,AB=CD,BC=8,∠B=60°,點M是邊BC的中點,點E、F分別是邊AB、CD上的兩個動點(點E與點A、B不重合,點F與點C、D不重合),且∠EMF=120°.
(1)求證:ME=MF;
(2)試判斷當點E、F分別在邊AB、CD上移動時,五邊形AEMFD的面積的大小是否會改變,請證明你的結論;
(3)如果點E、F恰好是邊AB、CD的中點,求邊AD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖所示,梯形ABCD中,ABCD,且AB+CD=BC,M是AD的中點.
求證:BM⊥CM.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,對角線AC、BD相交于點O,若S△AOD:S△ACD=1:3,則S△AOD:S△BOC=______;若S△AOD=1,則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

P、Q二人沿直角梯形ABCD道路晨練,如圖,ADBC,∠B=90°,AD=240m,BC=270m,P從點A開始沿AD邊向點D以1m/s的速度行走,Q從點C開始沿CB邊向點B以3m/s的速度跑步.
(1)P、Q二人分別從A、C兩點同時出發(fā)多少時間時,四邊形PQCD(P、Q二人所在的位置為P、Q點)是平行四邊形?
(2)添加一個什么條件時,P、Q二人分別從A、C兩點同時出發(fā),在某時刻四邊形PQCD是菱形?說明理由.
(3)P、Q二人分別從A、C兩點同時出發(fā)多少時間時,四邊形PQCD是等腰梯形?
(4)若添加AB=50
23
m,P、Q二人分別從A、C兩點同時出發(fā)多少時間時,△BPQ為等腰三角形?(第4小題只要求寫出答案即可.)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,則DE=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在直角梯形ABCD中,底AD=6cm,BC=11cm,腰CD=12cm,則這個直角梯形的周長為______cm.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥BC,AD=2,AB=4,DC=4
2
,點P在邊BC上運動(與B、C不重合),設PC=x,四邊形ABPD的面積為y.
(1)求y關于x的函數關系式,并寫出自變量x的取值范圍;
(2)若以D為圓心、1為半徑作⊙D,以P為圓心、以PC的長為半徑作⊙P,當x為何值時,⊙D與⊙P相切?并求出這兩圓相切時四邊形ABPD的面積.

查看答案和解析>>

同步練習冊答案