【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A(﹣6,0),點(diǎn)C是拋物線的頂點(diǎn),且⊙C與y軸相切,點(diǎn)P為⊙C上一動(dòng)點(diǎn).若點(diǎn)D為PA的中點(diǎn),連結(jié)OD,則OD的最大值是( 。
A.B.C.2D.
【答案】B
【解析】
取點(diǎn)H(6,0),連接PH,由待定系數(shù)法可求拋物線解析式,可得點(diǎn)C坐標(biāo), 可得⊙C半徑為4,由三角形中位線的定理可求OD=PH, 當(dāng)點(diǎn)C在PH上時(shí),PH有最大值,即可求解.
如圖,取點(diǎn)H(6,0),連接PH,
∵拋物線y=﹣x2+bx+c經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A(﹣6,0),
∴,
解得:,
∴拋物線解析式為:y=﹣,
∴頂點(diǎn)C(﹣3,4),
∴⊙C半徑為4,
∵AO=OH=6,AD=BD,
∴OD=PH,
∴PH最大時(shí),OD有最大值,
∴當(dāng)點(diǎn)C在PH上時(shí),PH有最大值,
∴PH最大值為=3+ =3+,
∴OD的最大值為: ,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:
(1)求a,b的值;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的項(xiàng)點(diǎn)為,交軸于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),且.
(1)求拋物線的函數(shù)解析式;
(2)過點(diǎn)的直線交拋物線于點(diǎn),交軸于點(diǎn),若的面積被軸分為1: 4兩個(gè)部分,求直線的解析式;
(3)在(2)的情況下,將拋物線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)180°得到拋物線,點(diǎn)為拋物線上一點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時(shí),為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時(shí)針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),結(jié)論AC=CF+CD是否成立?若不成立,請(qǐng)寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),補(bǔ)全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,O為圓心,點(diǎn)C是弧BE的中點(diǎn),過點(diǎn)C作PC⊥AE于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P
(1)求證:直線PC是⊙O的切線;
(2)若∠P=30°,AD=3,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)若a=,點(diǎn)M是拋物線上一動(dòng)點(diǎn),若滿足∠MAO不大于45°,求點(diǎn)M的橫坐標(biāo)m的取值范圍.
(3)經(jīng)過點(diǎn)B的直線l:y=kx+b與y軸正半軸交于點(diǎn)C.與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,且CD=4BC.若點(diǎn)P在拋物線對(duì)稱軸上,點(diǎn)Q在拋物線上,以點(diǎn)B,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場(chǎng)調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量(件)與銷售單價(jià)(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);
(2)設(shè)每月獲得利潤(rùn)為(元),求每月獲得利潤(rùn)(元)關(guān)于銷售單價(jià)(元)的函數(shù)解析式;
(3)由于市場(chǎng)競(jìng)爭(zhēng)激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤(rùn)不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的箱子里有四張外形相同的卡片卡片上分別標(biāo)有數(shù)字﹣1,1,3,5.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標(biāo),第二次得到的數(shù)字為縱坐標(biāo),得到一個(gè)點(diǎn)則這個(gè)點(diǎn).恰好在直線y=﹣x+4上的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分別為BC,AC,AB邊上的點(diǎn),BF=3AF,∠DFE=90°,若△BDF與△FEA的面積比為3:2,則△CDE與△DEF的面積比為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com