某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元).
(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;
(2)當銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少元?(參考關(guān)系:銷售額=售價×銷量,利潤=銷售額﹣成本)
(1) y=﹣2x2+120x﹣1600,20≤x≤40;(2) 30元/千克, 200元;(3)25.

試題分析:(1)根據(jù)銷售利潤y=(每千克銷售價﹣每千克成本價)×銷售量w,即可列出y與x之間的函數(shù)關(guān)系式;
(2)先利用配方法將(1)的函數(shù)關(guān)系式變形,再利用二次函數(shù)的性質(zhì)即可求解;
(3)先把y=150代入(1)的函數(shù)關(guān)系式中,解一元二次方程求出x,再根據(jù)x的取值范圍即可確定x的值.
試題解析:(1)y=w(x﹣20)
=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600,
則y=﹣2x2+120x﹣1600.
由題意,有,
解得20≤x≤40.
故y與x的函數(shù)關(guān)系式為:y=﹣2x2+120x﹣1600,自變量x的取值范圍是20≤x≤40;
(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∴當x=30時,y有最大值200.
故當銷售價定為30元/千克時,每天可獲最大銷售利潤200元;
(3)當y=150時,可得方程﹣2x2+120x﹣1600=150,
整理,得x2﹣60x+875=0,
解得x1=25,x2=35.
∵物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,∴x2=35不合題意,應(yīng)舍去.
故當銷售價定為25元/千克時,該農(nóng)戶每天可獲得銷售利潤150元.
考點: 1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

 已知在平面直角坐標系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過點A(-3,0)和點B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個二次函數(shù)的圖像向右平移5個單位后的頂點設(shè)為C,直線BC與x軸相交于點D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關(guān)系,并且說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù),
薄板的邊長(cm)
20
30
出廠價(元/張)
50
70
⑴求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;
⑵已知出廠一張邊長為40cm的薄板,獲得利潤是26元(利潤=出廠價-成本價).
①求一張薄板的利潤與邊長這之間滿足的函數(shù)關(guān)系式.
②當邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖在平面直角坐標系內(nèi),以點C(1,1)為圓心,2為半徑作圓,交x軸于A、B兩點,開口向下的拋物線經(jīng)過A、B兩點,且其頂點P在⊙C上。

(1)寫出A、B兩點的坐標;
(2)確定此拋物線的解析式;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知拋物線的解析式為y=﹣(x+3)2+1,則它的頂點坐標是( 。
A.(﹣3,1)B.(3,1)C.(3,﹣1)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象過點(-1,0)和點(2,-9).
(1)求該二次函數(shù)的解析式并寫出其對稱軸;
(2)已知點P(2,-2),連結(jié)OP,在x軸上找一點M,使△OPM是等腰三角形,請直接寫出點M的坐標(不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=ax2+bx+c的對稱軸是,小亮通過觀察得出了下面四條信息:
①c<0,②abc<0,③a-b+c>0,④2a-3b=0。你認為其中正確的有____________________。(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線可以由拋物線向__________________(平移)得到.

查看答案和解析>>

同步練習冊答案