【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有( )個(gè)
A. 4 B. 3 C. 2 D. 1
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正確).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正確),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正確).
設(shè)EC=x,由勾股定理,得
EF=x,CG=x,
AG=AEsin60°=EFsin60°=2×CGsin60°=x,
∴AC=,
∴AB=,
∴BE=﹣x=,
∴BE+DF=x﹣x≠x,(故④錯(cuò)誤),
∵S△CEF=,
S△ABE==,
∴2S△ABE==S△CEF,(故⑤正確).
綜上所述,正確的有4個(gè),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在頻數(shù)分布直方圖中,各個(gè)小組的頻數(shù)比為1∶5∶4∶6,則對(duì)應(yīng)的小長(zhǎng)方形的高的比為( )
A. 1∶4∶5∶3 B. 1∶5∶3∶6
C. 1∶5∶4∶6 D. 6∶4∶5∶1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(﹣4,0).
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請(qǐng)直接寫出此時(shí)S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:A=x2+x+1,B=x+p-1,化簡(jiǎn):A·B-p·A,當(dāng)x=-1時(shí),求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 半圓是弧,弧也是半圓 B. 三點(diǎn)確定一個(gè)圓
C. 平分弦的直徑垂直于弦 D. 直徑是同一圓中最長(zhǎng)的弦
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)數(shù)中,最大的一個(gè)數(shù)是( )
A. -3 B. 0 C. 1 D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(a-1)2的結(jié)果是( )
A. a2-1 B. a2+1 C. a2-2a+1 D. a2+2a-1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com