【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)A(-3,4)、B(-3,0)、C(-1,0) .以D為頂點(diǎn)的拋物線y = ax2+bx+c過點(diǎn)B. 動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動(dòng),點(diǎn)P、Q運(yùn)動(dòng)的速度均為每秒1個(gè)單位,運(yùn)動(dòng)的時(shí)間為t秒. 過點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),四邊形BDGQ的面積最大?最大值為多少?
(3)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫出此時(shí)菱形的周長;若不存在,請(qǐng)說明理由.
【答案】(1)y=-x2-2x+3(2)當(dāng)t =2時(shí),四邊形BDGQ的面積最大,最大值為2(3)存在, 或80-32
【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可以寫出點(diǎn)D得到坐標(biāo);由頂點(diǎn)D的坐標(biāo)可設(shè)該拋物線的頂點(diǎn)式方程為y=a(x+1)2+4,然后將點(diǎn)B的坐標(biāo)代入,即可求得系數(shù)a的值(利用待定系數(shù)法求拋物線的解析式)。(2)利用三角形相似△DPE∽△DBC可以求得點(diǎn)E的橫坐標(biāo),再求出AF的長,將其代入拋物線求出點(diǎn)G的橫坐標(biāo);然后結(jié)合拋物線方程、圖形與坐標(biāo)變換可以求得GE=最后根據(jù)三角形的面積公式可以求得,S四邊形BDGQ= S△BQG+S△BEG+S△DEG,由二次函數(shù)的最值可以解得t=2時(shí),S△ACG的最大值為2;(3)因?yàn)榱庑问青忂呄嗟鹊钠叫兴倪呅,所以點(diǎn)H在直線EF上。分CE是邊和對(duì)角線兩種情況討論即可。
試題解析:
(1) 由題意得,頂點(diǎn)D點(diǎn)的坐標(biāo)為(-1,4).
設(shè)拋物線的解析式為y=a (x+1) 2+4(a≠0),
∵拋物線經(jīng)過點(diǎn)B(-3,0),代入y=a (x+1) 2+4
可求得a=-1
∴拋物線的解析式為y=- (x+1) 2+4
即y=-x2-2x+3.
(2)由題意知,DP=BQ = t,
∵PE∥BC,
∴△DPE∽△DBC.
∴=2,
∴PE=DP= t.
∴點(diǎn)E的橫坐標(biāo)為-1-t,AF=2-t.
將x =-1-t代入y=- (x+1) 2+4,得y=-t2+4.
∴點(diǎn)G的縱坐標(biāo)為-t2+4,
∴GE=t2+4-(4-t)=-t2+t.
連接BG,S四邊形BDGQ= S△BQG+S△BEG+S△DEG,
即S四邊形BDGQ=BQ·AF+EG·(AF+DF)
=t(2-t)-t2+t.
=-t2+2t=- (t-2)2+2.
∴當(dāng)t =2時(shí),四邊形BDGQ的面積最大,最大值為2.
(3)存在,
菱形BQEH的周長為或80-32.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACE是以ABCD的對(duì)角線AC為邊的等邊三角形,點(diǎn)C與點(diǎn)E關(guān)于x軸對(duì)稱.若E點(diǎn)的坐標(biāo)是(7,﹣3 ),則D點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)A自來水供水路線為AB,現(xiàn)進(jìn)行改造,沿路線AO鋪設(shè)管道,并與主管道BO連接(AO⊥BO),這樣路線AO最短,工程造價(jià)最低,根據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一張三角形ABC紙片,點(diǎn)D、E分別是△ABC邊上兩點(diǎn). 研究(1):如果沿直線DE折疊,使A點(diǎn)落在CE上,則∠BDA′與∠A的數(shù)量關(guān)系是
研究(2):如果折成圖2的形狀,猜想∠BDA′、∠CEA′和∠A的數(shù)量關(guān)系是
研究(3):如果折成圖3的形狀,猜想∠BDA′、∠CEA′和∠A的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣3.5, ,0, ,﹣ , ,0.161161116…中,無理數(shù)有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)動(dòng)形式屬于旋轉(zhuǎn)的是( )
A.鐘表上鐘擺的擺動(dòng)
B.投籃過程中球的運(yùn)動(dòng)
C.“神十”火箭升空的運(yùn)動(dòng)
D.傳動(dòng)帶上物體位置的變化
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.
(1)若固定三根木條AB,BC,AD不動(dòng),AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動(dòng),AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點(diǎn)D移到BA的延長線上時(shí),點(diǎn)C也在BA的延長線上;當(dāng)點(diǎn)C移到AB的延長線上時(shí),點(diǎn)A.C.D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com