【題目】如圖,已知ABBC于點B,CDBC于點C,AB=4,CD=6,BC=14,PBC邊上一點,試問BP為何值時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似?

【答案】BP=5.6BP=2BP=12時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似.

【解析】試題分析:此題中P點的位置不同時,角的對應關(guān)系也不同,所以應分情況討論:(1)當PB:DC=AB:PC時;(2)當PB:PC=AB:DC時;然后根據(jù)各自的對應線段成比例求出BP的長.

試題解析:

∵AB⊥DB,CD⊥DB,

∴∠C=∠B=90°,設BP=x,

當PB:DC=AB:PC時,△PAB∽△DPC,

,

∴x=2或12;

當PB:PC=AB:DC時,△PAB∽△PDC,

,

解得:x=5.6;

解得BP=2或12或5.6.

故答案為:2或12或5.6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC中,分別延長邊AB,BC,CA,使得BDAB,CE2BC,AF3CA,若ABC的面積為1,則DEF的面積為( )

A. 12B. 14C. 16D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則F、C兩點的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形紙片ABCD折疊,使點D落在邊AB上的D'處,點C落在C'處,若∠AD'M=50°,則∠MNC'的度數(shù)為( 。

A. 100°B. 110°C. 120°D. 130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列分式方程

(1) ; (2) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.

(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;

(2)函數(shù)y=2x2-bx.

①若其不變長度為零,求b的值;

②若1≤b≤3,求其不變長度q的取值范圍;

(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1G2兩部分組成,若其不變長度q滿足0≤q≤3,m的取值范圍為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先填寫表,通過觀察后再回答問題:

a

……

0.0001

0.01

1

100

10000

……

……

0.01

x

1

y

100

……

(1)表格中,x=_________,y=_________

(2)從表格中探究a數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:

①已知,則≈___________

②已知,若,用含m的代數(shù)式表示b,則b=___________

(3)試比較a的大。ㄖ苯訉懗鼋Y(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為(

A.2B.2.5或3.5

C.3.5或4.5D.2或3.5或4.5

查看答案和解析>>

同步練習冊答案