精英家教網 > 初中數學 > 題目詳情

(1)下面是明明同學的作業(yè)中,對“已知關于x方程x2+數學公式kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(數學公式k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

解:(1)不正確.
△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=-(k-2)2-4
∵-(k-2)2≤0,-4<0,
∴△=-(k-2)2-4<0
∴原方程無實數根.

(2)過點C作CF⊥AD于F,則BE=CF=6,
∴AE=BE=6,
又∵Rt△CDF中,∠α=63°,CF=6,
∴cot63°=DF:CF,
又∵CF=6,
∴DF=CF•cot63°=6×0.5=3,
∴AD=AE+EF+FD=6+3+3=12,
∴S梯形ABCD=12(BC+AD)•BE=12(3+12)×6=45(平方米).
答:梯形ABCD面積為45平方米.
分析:(1)根據判別式來判斷根的情況時,計算的步驟要準確;
(2)過點C作CF⊥AD于F,利用直角三角形的特點來計算.
點評:解答問題是步驟要正確,細致.第二題要用到解直角三角形的有關知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)下面是明明同學的作業(yè)中,對“已知關于x方程x2+
3
kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(
3
k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.
精英家教網

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《銳角三角函數》(04)(解析版) 題型:解答題

(2003•宜昌)(1)下面是明明同學的作業(yè)中,對“已知關于x方程x2+kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2003•宜昌)(1)下面是明明同學的作業(yè)中,對“已知關于x方程x2+kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

科目:初中數學 來源:2003年湖北省宜昌市中考數學試卷(解析版) 題型:解答題

(2003•宜昌)(1)下面是明明同學的作業(yè)中,對“已知關于x方程x2+kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

同步練習冊答案