【題目】體育中考前,抽樣調(diào)查了九年級學(xué)生的“1分鐘跳繩成績,并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.

1)補(bǔ)全頻數(shù)分布直方圖;

2)扇形圖中m=   ;

3)若“1分鐘跳繩成績大于或等于140次為優(yōu)秀,則估計(jì)全市九年級5900名學(xué)生中“1分鐘跳繩成績?yōu)閮?yōu)秀的大約有多少人?

【答案】1)見解析;(284;(32056

【解析】

1)首先由A小組有6人,占10%,可求得總?cè)藬?shù),再根據(jù)各小組頻數(shù)之和等于數(shù)據(jù)總數(shù)求得第四小組的人數(shù),作出統(tǒng)計(jì)圖;

2360°乘以B組所占的比例,即可求出對應(yīng)扇形圓心角的度數(shù);

3)求出樣本中成績優(yōu)秀的人數(shù)所占的百分比,用樣本估計(jì)總體即可.

解:(1)由直方圖和扇形圖可知,A組人數(shù)是6人,占10%

則總?cè)藬?shù):6÷10%=60(人),

D組人數(shù)為:60614195=16;

2m=360°×=84°

故答案是:84;

3)成績?yōu)閮?yōu)秀的大約有:5900×=2056(人).

答:估計(jì)全市九年級5900名學(xué)生中“1分鐘跳繩成績?yōu)閮?yōu)秀的大約有2056人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為,且過點(diǎn).直線軸相交于點(diǎn).

1)求該拋物線的解析式;

2)以線段為直徑的圓與射線相交于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC中,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E在邊AC上,且ADE=∠B

(1) 如圖1,若ABAC,求證:

(2) 如圖2,若ADAE,求證:

(3) (2)的條件下,若DAC=90°,且CE=4,tanBAD,則AB____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;

(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),OA2,OC6,連接ACBC

1)求拋物線的解析式;

2)點(diǎn)D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時(shí),求點(diǎn)D的坐標(biāo);

3)點(diǎn)E是第四象限內(nèi)拋物線上的動(dòng)點(diǎn),連接CEBE.求△BCE面積的最大值及此時(shí)點(diǎn)E的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,﹣4),直線x=2x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到點(diǎn)A時(shí)停止移動(dòng).

1)線段OA所在直線的函數(shù)解析式是  ;

2)設(shè)平移后拋物線的頂點(diǎn)M的橫坐標(biāo)為m,問:當(dāng)m為何值時(shí),線段PA最長?并求出此時(shí)PA的長.

3)若平移后拋物線交y軸于點(diǎn)Q,是否存在點(diǎn)Q使得OMQ為等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的外接圓,的直徑,過的中點(diǎn)的直徑交弦于點(diǎn),連接、.

1)如圖1,若點(diǎn)是線段的中點(diǎn),求的度數(shù);

2)如圖2,在上取一點(diǎn),使,求證:

3)如圖3,取的中點(diǎn),連接并延長于點(diǎn),連接交于點(diǎn),若,且,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬建一個(gè)如圖所示的矩形倉庫ABCD,倉庫的一邊是長為12m的一面墻,另外三邊用30m長的建筑材料圍成.設(shè)AB的長為xm,矩形ABCI的面積為Sm2

(1)用含x的代數(shù)式表示BC的長,并求出x的取值范圍.

(2)寫出S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過P2,2),頂點(diǎn)為O00),將該圖象向右平移,當(dāng)它再次經(jīng)過點(diǎn)P時(shí),所得拋物線的函數(shù)表達(dá)式為(  )

A.yx2B.yx22C.yx42D.yx22+2

查看答案和解析>>

同步練習(xí)冊答案