【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A(﹣1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD.
(1)直接寫(xiě)出點(diǎn)C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點(diǎn)P是拋物線上的一動(dòng)點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).
【答案】(1)D(1,﹣4);(2)8;(3)(1+,2)、(1﹣,2)、(1+,﹣2)、(1﹣,﹣2).
【解析】
(1)利用拋物線與y軸交點(diǎn)求法得出C點(diǎn)坐標(biāo),再利用配方法求出其頂點(diǎn)坐標(biāo);
(2)利用D點(diǎn)坐標(biāo)得出△ABD的面積;
(3)利用△ABD的面積得出△ABP的面積,進(jìn)而求出P點(diǎn)縱坐標(biāo),進(jìn)而求出其橫坐標(biāo).
解:(1)當(dāng)x=0,則y=﹣3,
故C(0,﹣3),
y=x2﹣2x﹣3
=(x﹣1)2﹣4,
故D(1,﹣4);
(2)∵點(diǎn)A(﹣1,0),點(diǎn)B(3,0),
∴AB=4,
∴S△ABD=×4×4=8;
(3)∵△ABP的面積是△ABD面積的,
∴S△ABP=4,
∵AB=4,
∴P點(diǎn)縱坐標(biāo)為2或﹣2,
當(dāng)P點(diǎn)縱坐標(biāo)為2,則2=x2﹣2x﹣3,
解得:x1=1+,x2=1﹣,
此時(shí)P點(diǎn)坐標(biāo)為:(1+,2)或(1﹣,2),
當(dāng)P點(diǎn)縱坐標(biāo)為﹣2,則﹣2=x2﹣2x﹣3,
解得:x1=1+,x2=1﹣,
此時(shí)P點(diǎn)坐標(biāo)為:(1+,﹣2)或(1﹣,﹣2),
綜上所述:點(diǎn)P坐標(biāo)為:(1+,2)、(1﹣,2)、(1+,﹣2)、(1﹣,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,點(diǎn)P在斜邊AB上,將△ABP繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)P到達(dá)點(diǎn)Q.
(1)在原圖上畫(huà)出旋轉(zhuǎn)后的圖形.
(2)若AB=2,PC=3PB,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線AD交OC的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為D.已知圓O1的半徑為r,則AO1=_____,DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿EF對(duì)折,點(diǎn)A1恰好落在CD邊上的中點(diǎn)處,線段A1B1交BC于點(diǎn)G,若AB=6,AD=9,則CG的長(zhǎng)度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AE⊥BC于點(diǎn)E,AC為對(duì)角線,點(diǎn)O為對(duì)角線AC的中點(diǎn).
(1)如圖1,若AB⊥AC,AH平分∠BAC交BC于點(diǎn)H,連接EO,OE=2,CD=3,求AH的長(zhǎng);
(2)如圖2,若AE=EC,過(guò)C作CD的垂線交AE于點(diǎn)F,連接BF并延長(zhǎng)交AD于點(diǎn)G,連接GO并延長(zhǎng)GO交BC于點(diǎn)P,求證:DG=2EP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,,點(diǎn)從點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)為何值時(shí),;
(2)當(dāng),求的值;
(3)能否與相似?若能,求出的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0)
(1)求證:無(wú)論m為任何非0實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根.
(2)若拋物線y=mx2+(1﹣5m)x﹣5(m≠0)與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且|x1﹣x2|=6,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB為圓O的切線,切點(diǎn)分別為A、B,PO交AB于點(diǎn)C,PO的延長(zhǎng)線交圓O于點(diǎn)D,下列結(jié)論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷(xiāo)售量將減少10個(gè).
(1)設(shè)每個(gè)定價(jià)增加x元,此時(shí)的銷(xiāo)售量是多少?(用含x的代數(shù)式表示)
(2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?
(3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com