【題目】如圖,在矩形紙片ABCD中,AB=3,BC=5,點(diǎn)E、F是BC、CD邊上的動(dòng)點(diǎn)(包括端點(diǎn)處),若將紙片沿EF折疊,使得點(diǎn)C恰好落在AD邊上點(diǎn)P處.設(shè)CF=x,則x的取值范圍為

【答案】 ≤x≤3
【解析】解:如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),根據(jù)翻折對(duì)稱性可得
BP=BC=5,
在Rt△ABP中,AP= =4,
∴PD=AD﹣AP=5﹣4=1,
在Rt△PDF中,PF2=DP2+DF2 ,
即PF2=12+(3﹣PF)2
解得PF= ,
即CF的最小值是
如圖2,當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),CF的值最大是3.
故x的取值范圍為 ≤x≤3.
所以答案是: ≤x≤3.

【考點(diǎn)精析】通過靈活運(yùn)用翻折變換(折疊問題),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖示的方格紙中,(1)畫出△ABC關(guān)于MN對(duì)稱的圖形△A1B1C1

(2)說明△A2B2C2是由△A1B1C1經(jīng)過怎樣的平移得到的?

(3)在直線MN上找一點(diǎn)P,使得PB+PA最短.(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元;購(gòu)買1個(gè)A品牌和2個(gè)B品牌的計(jì)算器共需124元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開學(xué)前夕,該商店舉行促銷活動(dòng),具體辦法如下:購(gòu)買A品牌計(jì)算器按原價(jià)的九折銷售,購(gòu)買B品牌計(jì)算器超出10個(gè)以上超出的部分按原價(jià)的八折銷售,設(shè)購(gòu)買x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買x個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買同一品牌的計(jì)算器,若購(gòu)買計(jì)算器的數(shù)量超過10個(gè),問購(gòu)買哪種品牌的計(jì)算器更合算?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點(diǎn),把△ABC沿著直線DE折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是B′.

(1)如圖(1),如果點(diǎn)B′和頂點(diǎn)A重合,求CE的長(zhǎng);
(2)如圖(2),如果點(diǎn)B′和落在AC的中點(diǎn)上,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點(diǎn)E、H分別在BC、AB上,若AE⊥DH于點(diǎn)O,求證AE=DH;

類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;
拓展應(yīng)用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點(diǎn),AF= AD,求HG的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D是BC上的一點(diǎn),AB=10,BD=6,AD=8,AC=17.

(1)判斷AD與BC的位置關(guān)系,并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程
(1)
(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案