【題目】把(+5)﹣(+3)﹣(﹣1)+(﹣4)寫成省略括號的和的形式是(
A.﹣5﹣3+1﹣4
B.5﹣3﹣1﹣4
C.5﹣3+1﹣4
D.5+3+1﹣4

【答案】C
【解析】解:原式=5﹣3+1﹣4, 故選C
【考點精析】本題主要考查了有理數(shù)的加減混合運算的相關(guān)知識點,需要掌握混合運算法則:先乘方,后乘除,最后加減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式a2﹣9的結(jié)果是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠α=30°,則∠α的補角是( 。
A.30°
B.60°
C.120°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC, ∠BAC=∠ADB,BE平分∠ABCAD于點E,HBC上一點,且BH=BAAC于點F,連接FH.

求證:AE=FH;

EG//BCAC于點GAG=5,AC=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點A(-2,5)和點B(-5,p),ABCD 的 頂點C、D分別在y軸的負(fù)半軸、x軸的正半軸上,二次函數(shù)的圖象經(jīng)過點A、C、D.

(1)點D的坐標(biāo)為 ,

(2)若點E在對稱軸右側(cè)的二次函數(shù)圖象上,且∠DCE>∠BDA,則點E的橫坐標(biāo)m的取值范圍為

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC=∠ACB,點DBC所在的直線上,點E在射線AC上,且AD=AE,連接DE

如圖①,若∠B=∠C=35°∠BAD=80°,求∠CDE的度數(shù);

如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);

當(dāng)點D在直線BC上(不與點BC重合)運動時,試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點均在格點上.在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(﹣1,2).

(1)把△ABC向下平移8個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;

(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2

(3)若點P(a,b)是△ABC邊上任意一點,P2是△A2B2C2邊上與P對應(yīng)的點,寫出P2的坐標(biāo)為    ;

(4)試在y軸上找一點Q(在圖中標(biāo)出來),使得點Q到B2、C2兩點的距離之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,則 NP=(

A. 2cm B. 3cm C. 4cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中放入一個矩形紙片ABCO,將紙片翻折后,點B恰好落在軸上,記為,折痕為CE.直線CE的關(guān)系式是,與軸相交于點F,且AE=3.

(1)求OC長度;

(2)求點的坐標(biāo);

(3)求矩形ABCO的面積.

查看答案和解析>>

同步練習(xí)冊答案