【題目】小華將一條直角邊長(zhǎng)為1的一個(gè)等腰直角三角形紙片(如圖1),沿它的對(duì)稱軸折疊1次后得到一個(gè)等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對(duì)稱軸折疊后得到一個(gè)等腰直角三角形(如圖3),則圖3中的等腰直角三角形的一條腰長(zhǎng)為;同上操作,若小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形(如圖n+1)的一條腰長(zhǎng)為

【答案】;( n
【解析】解:每次折疊后,腰長(zhǎng)為原來(lái)的

故第2次折疊后得到的等腰直角三角形的一條腰長(zhǎng)為( 2= ;

小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形的一條腰長(zhǎng)為( n

所以答案是: ;( n

【考點(diǎn)精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題( 1+ +sin30°;
(1)計(jì)算:( 1+ +sin30°;
(2)先化簡(jiǎn),再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂

點(diǎn)在紙帶的另一邊沿上,測(cè)得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將ABC經(jīng)過(guò)一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:

1)在給定方格紙中畫出平移后的A′B′C′

2)畫出AB邊上的中線CD;

3)畫出BC邊上的高線AE;

4A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在括號(hào)中填寫理由.如圖,已知∠B+BCD180°,∠B=∠D.求證:∠E=∠DFE

證明:∵∠B+BCD180°(   

ABCD    

∴∠B      

又∵∠B=∠D(已知 ),

∴∠D      

ADBE   

∴∠E=∠DFE 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見錯(cuò)誤的糾正情況,收集了學(xué)生在作業(yè)和考試中的常見錯(cuò)誤,編制了10道選擇題,每題3分,對(duì)她所任教的初三(1)班和(2)班進(jìn)行了檢測(cè).如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況:

(1)利用圖中提供的信息,補(bǔ)全下表:

班級(jí)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

(1)班

24

24

(2)班

24


(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各有60名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績(jī)優(yōu)秀;
(3)觀察圖中的數(shù)據(jù)分布情況,你認(rèn)為哪個(gè)班的學(xué)生糾錯(cuò)的整體情況更好一些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖將小球從斜坡的O點(diǎn)拋出,小球的拋出路線可以用二次函數(shù)y=ax2+bx刻畫,頂點(diǎn)坐標(biāo)為(4,8),斜坡可以用 刻畫.

(1)求二次函數(shù)解析式;
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)求小球飛行過(guò)程中離坡面的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)美麗如畫的邛海濕地,西昌市污水處理廠決定先購(gòu)買兩型污水處理設(shè)備共20臺(tái),對(duì)濕地周邊污水進(jìn)行處理.每臺(tái)型污水處理設(shè)備12萬(wàn),每臺(tái)型污水處理設(shè)備10萬(wàn),已知2臺(tái)型污水處理設(shè)備和1臺(tái)型污水處理設(shè)備每周處理污水680噸,3臺(tái)型污水處理設(shè)備和2臺(tái)型污水處理設(shè)備每周處理污水1120噸.

1)求每臺(tái)、型污水處理設(shè)備每周分別可以處理污水多少噸?

2)經(jīng)預(yù)算,污水處理廠購(gòu)買設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)列舉出所有購(gòu)買方案,并指出所需購(gòu)買資金最少的方案及最少資金.

查看答案和解析>>

同步練習(xí)冊(cè)答案