【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。
【答案】(1) 40°;(2) 130°
【解析】
試題(1)連接AO,利用等腰三角形的對稱性即可求得∠OAC的度數(shù);(2)利用三角形的內(nèi)角和定理以及角平分線的定義求∠BOC與∠A的關(guān)系,再把∠A代入即可求∠BOC的度數(shù).
試題解析:
(1)連接AO,
∵在等腰△ABC中,∠B和∠C的平分線相交于點O,
∴等腰△ABC關(guān)于線段AO所在的直線對稱,
∵∠A=80°,
∴∠OAC=40°
(2)∵BO、CO分別平分∠ABC和∠ACB,
∴∠OBC= ∠ABC,∠OCB=∠ACB,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-( ∠ABC+∠ACB)
=180°- (∠ABC+∠ACB)
=180°- (180°-∠A)
=90°+∠A。
∴當(dāng)∠A=80°時,
∠BOC=180° (∠B+∠C)=90°+∠A=130°。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年1月20日,山西迎來了“復(fù)興號”列車,與“和諧號”相比,“復(fù)興號”列車時速更快,安全性更好.已知“太原南﹣北京西”全程大約500千米,“復(fù)興號”G92次列車平均每小時比某列“和諧號”列車多行駛40千米,其行駛時間是該列“和諧號”列車行駛時間的(兩列車中途停留時間均除外).經(jīng)查詢,“復(fù)興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐“復(fù)興號”G92次列車從太原南到北京西需要多長時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙兩個小組進(jìn)入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙兩個小組各項得分如下表:
小組 | 研究報告 | 小組展示 | 答辯 |
甲 | 91 | 80 | 78 |
乙 | 79 | 83 | 90 |
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果研究報告、小組展示、答辯按照4:3:3計算成績,哪個小組的成績最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠A=36°,∠ABC=∠ACB,∠1=∠2,∠3=∠4,BD與CE交于點O,則圖中等腰三角形有( 。
A. 6個 B. 7個 C. 8個 D. 9個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△AFD和△CEB中,點A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC.
(1)AD與BC相等嗎?請說明理由;
(2)BE與DF平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標(biāo);
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點.
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com