如圖,拋物線(xiàn)與x軸交于A(1,0)、B(-4,0)兩點(diǎn),交y軸與C點(diǎn).

(1)求該拋物線(xiàn)的解析式.
(2)在該拋物線(xiàn)位于第二象限的部分上是否存在點(diǎn)D,使得△DBC的面積S最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)拋物線(xiàn)的頂點(diǎn)為點(diǎn)F,連接線(xiàn)段CF,連接直線(xiàn)BC,請(qǐng)問(wèn)能否在直線(xiàn)BC上找到一個(gè)點(diǎn)M,在拋物線(xiàn)上找到一個(gè)點(diǎn)N,使得C、F、M、N四點(diǎn)組成的四邊形為平行四邊形,若存在,請(qǐng)寫(xiě)出點(diǎn)M和點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1);(2)存在,(-2,,6);(3)存在,M1,3),N1();M2),N2();M3),N3();M4(1,5),N4().

解析試題分析:(1)根據(jù)交點(diǎn)式直接求解;
(2)設(shè)點(diǎn)D的坐標(biāo)為(a,),用a表示出△DBC的面積S,由二次函數(shù)的最值求出即可;
(3)根據(jù)平行四邊形的判定,分類(lèi)求解即可.
試題解析:(1)∵拋物線(xiàn)與x軸交于A(1,0)、B(-4,0)兩點(diǎn),
∴拋物線(xiàn)解析式為.
(2)如圖,設(shè)點(diǎn)D的坐標(biāo)為(a,),過(guò)點(diǎn)D作平行于y軸的直線(xiàn)交直線(xiàn)BC于點(diǎn)E,
由C(0,4)、B(-4,0)可得直線(xiàn)BC:,∴點(diǎn)E(a,a+4).
∴S=.
∴當(dāng)a=-2時(shí),S最大,點(diǎn)D的坐標(biāo)為(-2,,6).

(3)存在,M1,3),N1();M2),N2();
M3),N3();M4(1,5),N4().
考點(diǎn):1.二次函數(shù)的性質(zhì);2. 平行四邊形的判定;3.分類(lèi)思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)軸相交于A、B兩點(diǎn),與軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).

(1)求拋物線(xiàn)的解析式及其對(duì)稱(chēng)軸方程;
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說(shuō)明理由;
(3)M為拋物線(xiàn)上BC之間的一點(diǎn),N為線(xiàn)段BC上的一點(diǎn),若MN∥軸,求MN的最大值;
(4)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)與坐標(biāo)軸交于三點(diǎn),點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)的直線(xiàn)軸交于點(diǎn),點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn),于點(diǎn).若,且

(1)求的值
(2)求出點(diǎn)的坐標(biāo)(其中用含的式子表示):
(3)依點(diǎn)的變化,是否存在的值,使為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷(xiāo)售量將減少10個(gè).
(1)設(shè)每個(gè)定價(jià)增加元,此時(shí)的銷(xiāo)售量是多少?(用含的代數(shù)式表示)
(2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?
(3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于x的方程
(1)當(dāng)k取何值時(shí),方程有兩個(gè)實(shí)數(shù)根;
(2)若二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值并用配方法求出拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(3)若(2)中的拋物線(xiàn)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).將拋物線(xiàn)向上平移n個(gè)單位,使平移后得到的拋物線(xiàn)的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2-4ax+4a+c與x軸交于點(diǎn)A、B,與y軸的正半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(1,0),OB=OC.

(1)求此拋物線(xiàn)的解析式;
(2)若點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn)與拋物線(xiàn)在x軸下方交于點(diǎn)Q,試問(wèn)線(xiàn)段PQ的長(zhǎng)度是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)若此拋物線(xiàn)的對(duì)稱(chēng)軸上的點(diǎn)M滿(mǎn)足∠AMC=45°,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

天貓商城旗艦店銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)該旗艦店每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果旗艦店想要每月獲得的利潤(rùn)不低于2000元,那么每月的成本最少需要     元?
(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

高科技發(fā)展公司投資500萬(wàn)元,成功研制出一種市場(chǎng)需求量較大的高科技替代產(chǎn)品,并投入資金1500萬(wàn)元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷(xiāo)售過(guò)程中發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)定為100元時(shí),年銷(xiāo)售量為20萬(wàn)件;銷(xiāo)售單價(jià)每增加10元,年銷(xiāo)售量將減少1萬(wàn)件,設(shè)銷(xiāo)售單價(jià)為x(元),年銷(xiāo)售量為y(萬(wàn)件),年獲利(年獲利=年銷(xiāo)售額一生產(chǎn)成本—投資)為z(萬(wàn)元).
(1)試寫(xiě)出y與x之間的函數(shù)關(guān)系式(不寫(xiě)x的取值范圍);
(2)試寫(xiě)出z與x之間的函數(shù)關(guān)系式(不寫(xiě)x的取值范圍);
(3)公司計(jì)劃,在第一年按年獲利最大確定銷(xiāo)售單價(jià)進(jìn)行銷(xiāo)售;到第二年年底獲利不低于1130萬(wàn)元,請(qǐng)借助函數(shù)的大致圖象說(shuō)明:第二年的銷(xiāo)售單價(jià)x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點(diǎn)(B在A的左側(cè)),頂點(diǎn)為C, 點(diǎn)D(1,m)在此二次函數(shù)圖象的對(duì)稱(chēng)軸上,過(guò)點(diǎn)D作y軸的垂線(xiàn),交對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)于E點(diǎn).

(1)求此二次函數(shù)的解析式和點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)D的坐標(biāo)為(1,1)時(shí),連接BD、.求證:平分;
(3)點(diǎn)G在拋物線(xiàn)的對(duì)稱(chēng)軸上且位于第一象限,若以A、C、G為頂點(diǎn)的三角形與以G、D、E為頂點(diǎn)的三角形相似,求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案