【題目】解答
(1)已知﹣ 與xnym+n是同類項,求m、n的值;
(2)先化簡后求值:( ) ,其中a= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(3x-2y)2-2x(3x-2y);
(2)(2a+1)(4a2-2a+1);
(3)先化簡,再求值:
(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x,其 中x=-3,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察圖形:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形_________________;
②線段AF與線段CE的數(shù)量關(guān)系是_________________;
(2)問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
(3)拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.
求證:DF=2CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別是PB、PC(靠近點P)的三等分點,△PEF、△PDC、△PAB的面積分別為S1、S2、S3 , 若AD=2,AB=2 ,∠A=60°,則S1+S2+S3的值為( )
A.
B.
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼.有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項式x4-y4,因式分解的結(jié)果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時,則各個因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項式4x3-xy2,取x=10,y=10時,用上述方法產(chǎn)生的密碼共有多少種?請你分別寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,E、F、G、H分別是BC、AD、BD、AC的中點.
①求證:EF與GH互相平分;
②當(dāng)四邊形ABCD的邊滿足______ 條件時,EF⊥GH.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市的空氣質(zhì)量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測網(wǎng)隨機抽取了若干天的空氣質(zhì)量情況作為樣本進(jìn)行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
請你根據(jù)圖中提供的信息,解答下列問題:
(1)計算被抽取的天數(shù);
(2)請補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“優(yōu)”的扇形的圓心角度數(shù);
(3)請估計該市這一年(365天)達(dá)到“優(yōu)”和“良”的總天數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com