【題目】如圖,在矩形中,點(diǎn)在對角線上,過點(diǎn),分別交于點(diǎn),連結(jié),.,,圖中陰影部分的面積為,則矩形的周長為_______.

【答案】

【解析】

PMADM,交BCN,進(jìn)而得到四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,繼而可證明SPEB=SPFD,然后根據(jù)勾股定理及完全平方公式可求,,進(jìn)而求出矩形的周長.

解:作PMADM,交BCN


則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,

AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,

SADC=SABC,SAMP=SAEPSPBE=SPBN,SPFD=SPDM,SPFC=SPCN

SDFP=SPBE,且SDFP+SPBE=9,

,且,

即,.

,

,

,

∴矩形ABCD的周長= 2=.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通?梢詫(shí)現(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點(diǎn)BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學(xué)上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.

2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示AB為⊙O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)FAE的延長線上,且BE=EF,線段CE交弦AB于點(diǎn)D.

(1)求證:CEBF;

(2)BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對稱性可知OCAB).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x (時(shí))的關(guān)系可近似地用二次函數(shù)y=-200x2+400x刻畫;1.5時(shí)后(包括1.5時(shí))yx可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于酒后駕駛,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a,b滿足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,則 的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一條直線上有AB、C、D、四點(diǎn)(AB、C三點(diǎn)依次從左到右排列),已知AD=ABAC=4CB,且CD=10cm,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于 A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖象上,CDx軸,且CD=2,直線l是拋物線的對稱軸,E是拋物線的頂點(diǎn).

(1)求b、c的值;

(2)如圖①,連接BE,線段OC上的點(diǎn)F關(guān)于直線l的對稱點(diǎn)F'恰好在線段BE上,求點(diǎn)F的坐標(biāo);

(3)如圖②,動點(diǎn)P在線段OB上,過點(diǎn)Px軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.試問:拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市出租車計(jì)費(fèi)方式如圖所示,請根據(jù)圖象回答問題.

1)出租車起價(jià)是多少元?在多少千米之內(nèi)只收起價(jià)費(fèi)?

2)由圖象求出起價(jià)里程走完之后每行駛1千米所增加的費(fèi)用;

3)小張想用30元坐車在該市游玩,試求他最多能走多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E是邊CD上一點(diǎn),將ADE沿AE折疊至處,CE交于點(diǎn)F,若∠B=52°,DAE=20°,則的度數(shù)為(

A. 40° B. 36° C. 50° D. 45°

查看答案和解析>>

同步練習(xí)冊答案