精英家教網 > 初中數學 > 題目詳情

如圖,已知△OAB的頂點A(﹣6,0),B(0,2),O是坐標原點,將△OAB繞點O按順時針旋轉90°,得到△ODC.

(1)寫出C,D兩點的坐標;
(2)求過A,D,C三點的拋物線的解析式,并求此拋物線頂點E的坐標;
(3)證明AB⊥BE.

解:(1)C(2,0),D(0,6)。
(2)頂點E的坐標為(﹣2,8)
(3)證明見解析

解析試題分析:(1)∵將△OAB繞點O按順時針旋轉90°,得到△ODC,∴△ODC≌△OAB。
∴OC=OB=2,OD=OA=6。∴C(2,0),D(0,6)。
(2)由于拋物線過點A(﹣6,0),C(2,0),所以設拋物線的解析式為y=a(x+6)(x﹣2)(a≠0),再將D(0,6)代入,求出a的值,得出拋物線的解析式,然后利用配方法求出頂點E的坐標。
∵拋物線過點A(﹣6,0),C(2,0),
∴可設拋物線的解析式為y=a(x+6)(x﹣2)(a≠0),
∵D(0,6)在拋物線上,∴6=﹣12a,解得a=
∴拋物線的解析式為y=(x+6)(x﹣2),即y=x2﹣2x+6。
∵y=x2﹣2x+6=(x+2)2+8,∴頂點E的坐標為(﹣2,8)。
(3)已知A、B、E三點的坐標,運用勾股定理計算得出AB2=40,BE2=40,AE2=80,則AB2+BE2=AE2,根據勾股定理的逆定理即可證明AB⊥BE。
連接AE,

∵A(﹣6,0),B(0,2),E(﹣2,8),
∴AB2=62+22=40,
BE2=(﹣2﹣0)2+(8﹣2)2=40,
AE2=(﹣2+6)2+(8﹣0)2=80。
∴AB2+BE2=AE2。
∴△ABE是直角三角形。
∴AB⊥BE.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,要設計一個矩形的花壇,花壇長60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側有兩個半圓環(huán)形甬道,半圓環(huán)形甬道的內半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設橫向甬道的寬為2x m.(π的值取3)

(1)用含x的式子表示兩個半圓環(huán)形甬道的面積之和;
(2)當所有甬道的面積之和比矩形面積的多36 m2時,求x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.

(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D。

(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結論;
(3)如圖(2),將拋物線C2向下平移m個單位(m>0)得拋物線C3,C3的頂點為G,與y軸交于M。點N是M關于x軸的對稱點,點P()在直線MG上。問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.

(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線經過A(﹣2,0),B(﹣3,3)及原點O,頂點為C

(1)求拋物線的函數解析式.
(2)設點D在拋物線上,點E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點D的坐標.
(3)P是拋物線上第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)設拋物線的頂點為D,在其對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線經過△ABC的三個頂點,點A坐標為(0,3),點B坐標為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數關系表達式及點C的坐標;
(2)點E為線段OC上一動點,以OE為邊在第一象限內作正方形OEFG,當正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動.設平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數關系式及自變量t的取值范圍;并求出當t為何值時,S有最大值,最大值是多少?

查看答案和解析>>

同步練習冊答案