精英家教網(wǎng)如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是
AB
上任意一點,過C作⊙O的切線分別交PA,PB于D,E.若△PDE的周長為12,則PA的長為( 。
A、12B、6C、8D、4
分析:由PA,PB分別和⊙O切于A,B兩點與DE是⊙O的切線,根據(jù)切線長定理,即可得PA=PB,DA=DC,EB=EC,又由△PDE的周長為12,易求得PA+PB=12,則可求得答案.
解答:解:∵PA,PB分別和⊙O切于A,B兩點,
∴PA=PB,
∵DE是⊙O的切線,
∴DA=DC,EB=EC,
∵△PDE的周長為12,
即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,
∴PA=6.
故選B.
點評:此題考查了切線長定理.此題難度不大,解題的關鍵是熟練應用切線長定理,注意數(shù)形結合思想與整體思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA精英家教網(wǎng)=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα=
45
,OQ=15,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是
AB
上任意一點,過C作⊙O的切線分別交PA,PB于D,E.
(1)若△PDE的周長為10,則PA的長為
5
5
;
(2)連接CA、CB,若∠P=50°,則∠BCA的度數(shù)為
115
115
度.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川廣安卷)數(shù)學 題型:解答題

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.

(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα= ,OQ=15,求AB的長.
[來源:學科網(wǎng)ZXXK]

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省翠苑中學九年級下學期3月考數(shù)學卷(帶解析) 題型:解答題

如圖所示.P⊙O外一點.PA⊙O的切線.A是切點.B⊙O上一點.且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q

(1)求證:PB⊙O的切線;
(2)求證: AQ?PQ= OQ?BQ; 
(3)設∠AOQ=.若cos=OQ= 15.求AB的長

查看答案和解析>>

同步練習冊答案