【題目】對于一次函數(shù)y=-2x+4,下列結論錯誤的是(  )

A. 函數(shù)的圖象與x軸的交點坐標是

B. 函數(shù)值隨自變量的增大而減小

C. 函數(shù)的圖象不經(jīng)過第三象限

D. 函數(shù)的圖象向下平移4個單位長度得的圖象

【答案】A

【解析】

根據(jù)一次函數(shù)與一元一次方程的關系可判斷A的正誤,根據(jù)一次函數(shù)的性質可判斷BC的正誤根據(jù)一次函數(shù)平移的規(guī)律可判斷D的正誤

A. y=0時,0=-2x+4,∴x=2,∴函數(shù)的圖象與x軸的交點坐標是,故不正確;

B. ∵一次函數(shù)y=-2x+4k=-2<0,∴函數(shù)值隨自變量增大而減小,故正確;

C. ∵一次函數(shù)y=-2x+4k=-2<0,b=4>0,∴函數(shù)圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故正確;

D. 函數(shù)的圖象向下平移4個單位長度得y=-2x+4-4=的圖象,故正確;

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出迎元旦促銷打折活動,具體優(yōu)惠情況如表:

購物總金額(原價)

折扣

不超過5000元的部分

九折

超過5000元且不超過10000元的部分

八折

超過10000元且不超過20000元的部分

七折

……

……

例如:若購買的商品原價為15000元,實際付款金額為:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若這種品牌電腦的原價為8000/臺,請求出張老師實際付款金額;

2)已知張老師購買一臺該品牌電腦實際付費5700元.

①求該品牌電腦的原價是多少元/臺?

②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進價為多少元/臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學教師將班中留守學生的學習狀況分成四個等級,制成不完整的統(tǒng)計圖:

(1)該班有多少名留守學生?并將該條形統(tǒng)計圖補充完整.

(2)數(shù)學教師決定從等級的留守學生中任選兩名進行數(shù)學學習幫扶,使用列表或畫樹狀圖的方法,求出所選幫扶的兩名留守學生來自同一等級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx3A1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標為﹣2,點Pmn)是線段AD上的動點.

1)求直線AD及拋物線的解析式;

2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度lm的關系式,m為何值時,PQ最長?

3)在平面內是否存在整點(橫、縱坐標都為整數(shù))R,使得PQ,DR為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】算24點游戲是一種使用撲克牌來進行的益智類游戲,游戲內容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運用你所學過的加、減、乘、除、乘方運算得出24.每張牌都必須使用一次,但不能重復使用.

(1)如圖1,在玩“24點”游戲時,小明抽到以下4張牌:

請你幫他寫出運算結果為24的算式:(寫出2個);   、   ;

(2)如圖2,如果表示正, 表示負,J表示11點,Q表示12點.請你用下列4張牌表示的數(shù)寫出運算結果為24的算式(寫出1個):   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點I,IE⊥BC與E,下列結論:①∠BIE=∠CID;②S△ABCIE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了組織一次球類對抗賽,在本校隨機抽取了若干名學生,對他們每個人最喜歡的一項球類運動進行了統(tǒng)計,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你依據(jù)以上的信息回答下列問題:

1)求本次被調查的學生人數(shù);

2)通過計算補全條形統(tǒng)計圖;

3)若全校有4000名學生,請你估計該校最喜歡籃球和足球運動的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.

(1)求證:BCP≌△DCP;

(2)求證:DPE=ABC;

(3)把正方形ABCD改為菱形,其它條件不變(如圖),若ABC=58°,則DPE=   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABCBAC 90o,DBC的中點,EAD的中點,過點AAF//BC BE的延長線于點F,連接CF.

(1)求證:AD=AF.

(2)當AB=AC=時,求四邊形ADCF 的面積.

查看答案和解析>>

同步練習冊答案