【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)M(﹣2, ),頂點(diǎn)坐標(biāo)為N(﹣1, ),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長(zhǎng)最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
解:由拋物線頂點(diǎn)坐標(biāo)為N(﹣1, ),可設(shè)其解析式為y=a(x+1)2+ ,
將M(﹣2, )代入,得 =a(﹣2+1)2+ ,
解得a=﹣ ,
故所求拋物線的解析式為y=﹣ x2﹣ x+
(2)
解:∵y=﹣ x2﹣ x+ ,
∴x=0時(shí),y= ,
∴C(0, ).
y=0時(shí),﹣ x2﹣ x+ =0,
解得x=1或x=﹣3,
∴A(1,0),B(﹣3,0),
∴BC= =2 .
設(shè)P(﹣1,m),
當(dāng)CP=CB時(shí),有CP= =2 ,解得m= ± ;
當(dāng)BP=BC時(shí),有BP= =2 ,解得m=±2 ;
當(dāng)PB=PC時(shí), = ,解得m=0,
綜上,當(dāng)△PBC為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(﹣1, + ),(﹣1, ﹣ ),(﹣1,2 ),(﹣1,﹣2 ),(﹣1,0)
(3)
解:由(2)知BC=2 ,AC=2,AB=4,
所以BC2+AC2=AB2,即BC⊥AC.
連結(jié)BC并延長(zhǎng)至B′,使B′C=BC,連結(jié)B′M,交直線AC于點(diǎn)Q,
∵B、B′關(guān)于直線AC對(duì)稱,
∴QB=QB′,
∴QB+QM=QB′+QM=MB′,
所以此時(shí)△QBM的周長(zhǎng)最小.
由B(﹣3,0),C(0, ),易得B′(3,2 ).
設(shè)直線MB′的解析式為y=kx+n,
將M(﹣2, ),B′(3,2 )代入,
得 ,解得 ,
即直線MB′的解析式為y= x+ .
同理可求得直線AC的解析式為y=﹣ x+ .
由 ,解得 ,即Q(﹣ , ).
所以在直線AC上存在一點(diǎn)Q(﹣ , ),使△QBM的周長(zhǎng)最小.
【解析】(1)先由拋物線的頂點(diǎn)坐標(biāo)為N(﹣1, ),可設(shè)其解析式為y=a(x+1)2+ ,再將M(﹣2, )代入,得 =a(﹣2+1)2+ ,解方程求出a的值即可得到拋物線的解析式;(2)先求出拋物線y=﹣ x2﹣ x+ 與x軸交點(diǎn)A、B,與y軸交點(diǎn)C的坐標(biāo),再根據(jù)勾股定理得到BC= =2 .設(shè)P(﹣1,m),當(dāng)△PBC為等腰三角形時(shí)分三種情況進(jìn)行討論:①CP=CB;②BP=BC;③PB=PC;(3)先由勾股定理的逆定理得出BC⊥AC,連結(jié)BC并延長(zhǎng)至B′,使B′C=BC,連結(jié)B′M,交直線AC于點(diǎn)Q,由軸對(duì)稱的性質(zhì)可知此時(shí)△QBM的周長(zhǎng)最小,由B(﹣3,0),C(0, ),根據(jù)中點(diǎn)坐標(biāo)公式求出B′(3,2 ),再運(yùn)用待定系數(shù)法求出直線MB′的解析式為y= x+ ,直線AC的解析式為y=﹣ x+ ,然后解方程組 ,即可求出Q點(diǎn)的坐標(biāo).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①對(duì)頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有( ).
A. ①②③④ B. ①④ C. ②④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點(diǎn),且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=6,AB=14,請(qǐng)求出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對(duì)本年級(jí)530名學(xué)生的體育達(dá)標(biāo)情況進(jìn)行調(diào)查,制作出如圖所示的統(tǒng)計(jì)圖,其中1班有50人.(注:30分以上為達(dá)標(biāo),滿分50分)根據(jù)統(tǒng)計(jì)圖,解答下面問題:
(1)初三(1)班學(xué)生體育達(dá)標(biāo)率和本年級(jí)其余各班學(xué)生體育達(dá)標(biāo)率各是多少?
(2)若除初三(1)班外其余班級(jí)學(xué)生體育考試成績(jī)?cè)?0﹣﹣40分的有120人,請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;(注:請(qǐng)?jiān)趫D中分?jǐn)?shù)段所對(duì)應(yīng)的圓心角的度數(shù))
(3)如果要求全年級(jí)學(xué)生的體育達(dá)標(biāo)率不低于90%,試問在本次調(diào)查中,該年級(jí)全體學(xué)生的體育達(dá)標(biāo)率是否符合要求?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2 , 兩條拋物線相交于點(diǎn)C.
(1)請(qǐng)直接寫出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com