【題目】如圖所示,四邊形ABCD是正方形,M是AB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點E在AB邊上滑動(點E不與點A、B重合),另一直角邊與∠CBM的平分線BF相交于點F.
(1)如圖1,當點E在AB邊得中點位置時:
①通過測量DE、EF的長度,猜想DE與EF滿足的數(shù)量關系是 .
②連接點E與AD邊的中點N,猜想NE與BF滿足的數(shù)量關系是 ,請證明你的猜想.
(2)如圖2,當點E在AB邊上的任意位置時,猜想此時DE與EF有怎樣的數(shù)量關系,并證明你的猜想.
【答案】(1)①DE=EF;②NE=BF;理由見解析;(2)DE=EF,理由見解析.
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)及N,E分別為AD,AB的中點可得DN=EB,再根據(jù)角平分線的性質(zhì)及AN=AE可得∠DNE=∠EBF=135°,從而可證得△DNE≌△EBF,繼而證得結論;
(2)在DA邊上截取DN=EB,連結NE,點N就使得NE=BF成立,由DN=EB可得AN=AE,根據(jù)角平分線的性質(zhì)可得∠DNE=∠EBF=90°+45°=135°,通過證△DNE≌△EBF,從而得結論.
(1)①DE=EF;②NE=BF;理由如下:
∵四邊形ABCD為正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分別為AD,AB中點,
∴AN=DN=AD,AE=EB=AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,
又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90,∴∠ANE=45°,∴∠DNE=180°﹣∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,
∴∠CBF=45°,∠EBF=135°,在△DNE和△EBF中, ∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.
(2)DE=EF,理由如下:
在DA邊上截取DN=EB,連接NE,∵四邊形ABCD是正方形,DN=EB,∴AN=AE,∴△AEN為等腰直角三角形,∴∠ANE=45°,∴∠DNE=180°﹣45°=135°,∵BF平分∠CBM,AN=AE,∴∠EBF=90°+45°=135°,∴∠DNE=∠EBF, ∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF,在△DNE和△EBF中,∴△DNE≌△EBF(ASA), ∴DE=EF.
科目:初中數(shù)學 來源: 題型:
【題目】同學們都知道表示5與(-2)之差的絕對值,也可理解為5與-2兩數(shù)在數(shù)軸上所對的兩點之間的距離,試探索:
(1) 求= ;
(2) 使得=3成立的數(shù)是 ;
(3) 由以上探索猜想,對于任何有理數(shù)x,則最小值是 ;
(4)由以上探索猜想,使得的成立的整數(shù)x是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1);
(2);
(3)(-36)÷(+12)-(-4)×(-0.5);
(4)(1-+)×(-48);
(5);
(6);
(7);
(8)18+42÷(-2)-(-3)2×5;
(9)×[-32÷(-)2+(-2)3] ;
(10);
(11)
(12)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,直線y=-x+3與x軸相交于點A,與y軸相交于點B,點C(m,n)是第二象限內(nèi)一點,以點C為圓心的圓與x軸相切于點E,與直線AB相切于點F.
(1)當四邊形OBCE是矩形時,求點C的坐標;
(2)如圖②,若⊙C與y軸相切于點D,求⊙C的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點在線段上運動(不與、重合),連接,作,交線段于.
(1)當時,= ,= ;點從向運動時,逐漸 (填“增大”或“減小”);
(2)當等于多少時,,請說明理由;
(3)在點的運動過程中,的形狀可以是等腰三角形嗎?若可以,請直接寫出的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, , ,將繞點沿逆時針方向旋轉(zhuǎn)得到.
(1)線段的長是 , 的度數(shù)是 ;
(2)連結,求證:四邊形是平行四邊形;
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=a-4x+c的圖像經(jīng)過點A和點B.
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)點P(m,m)與點Q均在該函數(shù)圖像上(其中m>0),且這兩點關于拋物線的對稱軸對稱,求m的值及點Q到x軸的距離
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線;
(2)設D是弧AC的中點,連結BD交AC 于G,過D作DE⊥AB于E,交AC于F.求證:FD=FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分線交AC于D,BD=4,過點C作CE⊥BD交BD的延長線于E,則CE的長為( 。
A.B.2C.3D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com