【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點(diǎn)PA出發(fā),以每秒2厘米的速度向B運(yùn)動(dòng),點(diǎn)QC同時(shí)出發(fā),以每秒3厘米的速度向A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也相應(yīng)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t

⑴用含t的代數(shù)式表示:AP=   ,AQ=   

⑵當(dāng)以A,PQ為頂點(diǎn)的三角形與ABC相似時(shí),求運(yùn)動(dòng)時(shí)間是多少?

【答案】(1)AP=2t,AQ=16﹣3t;(2)運(yùn)動(dòng)時(shí)間為秒或4秒.

【解析】

(1)根據(jù)路程=速度時(shí)間,即可表示出AP,AQ的長(zhǎng)度.

(2)此題應(yīng)分兩種情況討論.(1)當(dāng)APQ∽△ABC時(shí);(2)當(dāng)APQ∽△ACB時(shí).利用相似三角形的性質(zhì)求解即可.

(1)AP=2t,AQ=16﹣3t.

(2)∵∠PAQ=BAC,

∴當(dāng)時(shí),APQ∽△ABC,即,解得

當(dāng)時(shí),APQ∽△ACB,即,解得t=4.

∴運(yùn)動(dòng)時(shí)間為秒或4秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)AB的坐標(biāo)分別為(-,0)(0,-1),把點(diǎn)A繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)135°得點(diǎn)C,若點(diǎn)C在反比例函數(shù)y=的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)若點(diǎn)Dy軸上,點(diǎn)E在反比例函數(shù)y=的圖象上,且以點(diǎn)A、BD、E為頂點(diǎn)的四邊形是平行四邊形.請(qǐng)畫(huà)出滿(mǎn)足題意的示意圖并在示意圖的下方直接寫(xiě)出相應(yīng)的點(diǎn)D、E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,四邊形和四邊形都是正方形,且,正方形固定,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)()

1)如圖②,連接、,相交于點(diǎn),請(qǐng)判斷是否相等?并說(shuō)明理由;

2)如圖②,連接,在旋轉(zhuǎn)過(guò)程中,當(dāng)為直角三角形時(shí),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角的度數(shù);

3)如圖③,點(diǎn)為邊的中點(diǎn),連接,在正方形的旋轉(zhuǎn)過(guò)程中,的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初二數(shù)學(xué)興趣小組活動(dòng)時(shí),碰到這樣一道題:

“已知正方形AD,點(diǎn)E、F、G、H分別在邊ABBC、CDDA上,若,則EG=FH”.

經(jīng)過(guò)思考,大家給出了以下兩個(gè)方案:

(甲)過(guò)點(diǎn)AAMHFBC于點(diǎn)M,過(guò)點(diǎn)BBNEGCD于點(diǎn)N;

(乙)過(guò)點(diǎn)AAMHFBC于點(diǎn)M,作ANEGCD的延長(zhǎng)線(xiàn)于點(diǎn)N;

1)對(duì)小杰遇到的問(wèn)題,請(qǐng)?jiān)诩住⒁覂蓚(gè)方案中任選一個(gè),加以證明(如圖1)

2)如果把條件中的“”改為“EGFH的夾角為45°”,并假設(shè)正方形ABCD的邊長(zhǎng)為1,FH的長(zhǎng)為(如圖2),試求EG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019612日,重慶直達(dá)香港高鐵的車(chē)票正式開(kāi)售據(jù)悉,重慶直達(dá)香港的這趟G319/320次高鐵預(yù)計(jì)在7月份開(kāi)行,全程1342公里只需7個(gè)半小時(shí)該車(chē)次沿途停靠站點(diǎn)包括遵義、貴陽(yáng)東、桂林西、肇慶東、廣州南和深圳北重慶直達(dá)香港高鐵開(kāi)通將為重慶旅游業(yè)發(fā)展增添生機(jī)與活力,預(yù)計(jì)重慶旅游經(jīng)濟(jì)將創(chuàng)新高在此之前技術(shù)部門(mén)做了大量測(cè)試,在一次測(cè)試中一高鐵列車(chē)從地出發(fā)勻速駛向地,到達(dá)地停止;同時(shí)一普快列車(chē)從地出發(fā),勻速駛向地,到達(dá)地停止且兩地之間有一地,其中,如圖①兩列車(chē)與地的距離之和(千米)與普快列車(chē)行駛時(shí)間(小時(shí))之間的關(guān)系如圖②所示則高鐵列車(chē)到達(dá)地時(shí),普快列車(chē)離地的距離為__________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市城建公司新建了一個(gè)購(gòu)物中心,共有商鋪30間,據(jù)調(diào)查分析,當(dāng)每間的年租金為10萬(wàn)元時(shí),可全部租出:若每間的年租金每增加0.5萬(wàn)元,則少租出商鋪一間,為提供優(yōu)質(zhì)服務(wù),城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費(fèi)1萬(wàn)元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費(fèi).

(1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出   間.

(2)當(dāng)每問(wèn)商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益為286萬(wàn)元,且使租客獲得實(shí)惠?(收益=租金﹣物業(yè)費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒子中有4個(gè)球,每個(gè)球上寫(xiě)有1~4中的一個(gè)數(shù)字,不同的球上數(shù)字不同.

(1)若從盒中取三個(gè)球,以球上所標(biāo)數(shù)字為線(xiàn)段的長(zhǎng),則能構(gòu)成三角形的概率是多少?

(2)若小明從盒中取出一個(gè)球,放回后再取出一個(gè)球,然后讓小華猜兩球上的數(shù)字之和,你認(rèn)為小華猜和為多少時(shí),猜中的可能性大.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):

探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.

探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線(xiàn)所夾的鈍角之間有何種關(guān)系?

已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.

探究三:若將△ADC改為任意四邊形ABCD呢?

已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,EBC中點(diǎn),FAB上一點(diǎn),GAD上一點(diǎn),且BF=2,FEG=60°,EGAC于點(diǎn)H,下列結(jié)論①△BEF∽△CHE;AG=1;EH=;SBEF=3SAGH;正確的是______.(填序號(hào)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案