如圖,AB是⊙O的直徑,點A、C、D在⊙O上,過D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.
(1)判斷直線BP和⊙O的位置關系,并說明你的理由;
(2)當⊙O的半徑為,AC=2,BE=1時,求BP的長.

【答案】分析:(1)連接BC,求出∠ACB=90°,根據(jù)PF∥AC,推出BC⊥PF,求出∠PBC+∠BPF=90°,求出∠PBC+∠ABC=90°,根據(jù)切線的判定推出即可;
(2)根據(jù)勾股定理求出BC,證△ABC和△BEP相似,得出比例式,即可求出BP.
解答:(1)解:直線BP和⊙O相切,
理由:連接BC,
∵AB是⊙O直徑,
∴∠ACB=90°,
∵PF∥AC,
∴BC⊥PF,
則∠PBC+∠BPF=90°,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
∴∠PBC+∠ABC=90°,
即∠PBA=90°,
∵AB是直徑,
∴直線BP和⊙O相切;

(2)解:由已知,得∠ACB=90°,
∵AC=2,AB=2,
∴由勾股定理得:BC=4,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
由(1),得∠ABP=∠ACB=90°,
∴△ACB∽△EBP,
=,
解得BP=2,
即BP的長為2.
點評:本題考查了圓周角定理、勾股定理、相似三角形的性質和判定、切線的判定的應用,能綜合運用定理進行推理和計算是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案