某菜農(nóng)搭建了一個橫截面為拋物線的大棚,尺寸如圖:

(1)如圖建立平面直角坐標(biāo)系,使拋物線對稱軸為y軸,求該拋物線的解析式;
(2)若需要開一個截面為矩形的門(如圖所示),已知門的高度為1.60米,那么門的寬度最大是多少米(不考慮材料厚度)?(結(jié)果保留根號)

(1);(2).

解析試題分析:(1)根據(jù)題意設(shè)出二次函數(shù)的解析式,把圖象上點的坐標(biāo)代入即可求出二次函數(shù)的解析式;
(2)令y=1.6,求出x的值,即可確定門的最大寬度。
試題解析:(1)由圖可設(shè)拋物線的解析式為,
由圖知拋物線與軸正半軸的交點為(2,0),則
,
∴拋物線的解析式為
(2)當(dāng)時,知,
所以門的寬度最大為米。
考點: 二次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一個二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,
①則b、c 應(yīng)滿足關(guān)系為                
②若該二次函數(shù)的圖象經(jīng)過A(m,n)、B(m +6,n)兩點,求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個交點C(6,0)、D(k,0),線段CD(含端點)上有若干個橫坐標(biāo)為整數(shù)的點,且這些點的橫坐標(biāo)之和為21,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B(3,0),將點B向右平移3個單位得點C.
(1)求二次函數(shù)的解析式;
(2)點M在線段OC上,平面內(nèi)有一點Q,使得四邊形ABMQ為菱形,求點M坐標(biāo);
(3)點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點運動時,點D、點E、點F也隨之運動);
①當(dāng)點E在二次函數(shù)的圖像上時,求OP的長;
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,若P點運動t秒時,直線AC與以DE為直徑的⊙M相切,直接寫出此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2 m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.

(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y軸上,且AC=BC.

(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標(biāo)并求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時,求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我區(qū)某房地產(chǎn)開發(fā)公司于2013年5月份完工一商品房小區(qū),6月初開始銷售,其中6月的銷售單價為0.7萬元/m2,7月的銷售單價為0.72萬元/m2,且每月銷售價格(單位:)與月份x(6≤x≤11,x為整數(shù))之間滿足一次函數(shù)關(guān)系,每月的銷售面積為(單位:),其中y2=-2000x+26000(6≤x≤11,x為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個月的銷售額最高?最高銷售額為多少萬元?
(3)2013年11月時,因受某些因素影響,該公司銷售部預(yù)計12月份的銷售面積會在11月銷售面積基礎(chǔ)上減少,于是決定將12月份的銷售價格在11月的基礎(chǔ)上增加,該計劃順利完成.為了盡快收回資金,2014年1月公司進行降價促銷,該月銷售額為(1500+600a)萬元.這樣12月、1月的銷售額共為萬元,請根據(jù)以上條件求出的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象過點(-1,0)和點(2,-9).
(1)求該二次函數(shù)的解析式并寫出其對稱軸;
(2)已知點P(2,-2),連結(jié)OP,在x軸上找一點M,使△OPM是等腰三角形,請直接寫出點M的坐標(biāo)(不寫求解過程).

查看答案和解析>>

同步練習(xí)冊答案