【題目】如圖,已知∠AOB等于30°,角內(nèi)有一點(diǎn)P,OP=6,點(diǎn)M在OA上,點(diǎn)N在OB上,△PMN周長的最小值是

【答案】6
【解析】解:分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
所以答案是:6.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解軸對稱-最短路線問題的相關(guān)知識(shí),掌握已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,ACBD相交于點(diǎn)E,且DC2=CECA.

(1)求證:BC=CD;

(2)分別延長AB,DC交于點(diǎn)P,過點(diǎn)AAFCDCD的延長線于點(diǎn)F,若PB=OB,CD=,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是方程x2-4x-m=0的一個(gè)根,則m的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1OA= cmOB= cm

2)若點(diǎn)C是線段AO上一點(diǎn),且滿足AC=CO+CB,求CO的長.

3)若動(dòng)點(diǎn)PQ分別從A、B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為2cm/s,點(diǎn)Q的速度為1cm/s,設(shè)運(yùn)動(dòng)時(shí)間為ts),當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).

當(dāng)t為何值時(shí),2OP﹣OQ=8

當(dāng)點(diǎn)P經(jīng)過點(diǎn)O時(shí),動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以3cm/s的速度也向右運(yùn)動(dòng).當(dāng)點(diǎn)M追上點(diǎn)Q后立即返回,以同樣的速度向點(diǎn)P運(yùn)動(dòng),遇到點(diǎn)P后立即返回,又以同樣的速度向點(diǎn)Q運(yùn)動(dòng),如此往返,直到點(diǎn)P、Q停止時(shí),點(diǎn)M也停止運(yùn)動(dòng).在此過程中,點(diǎn)M行駛的總路程為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠CAB=∠DAB,則添加下列一個(gè)條件不能使△ABC≌△ABD的是(

A.AC=AD
B.BC=BD
C.∠C=∠D
D.∠ABC=∠ABD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣a的相反數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲地宏達(dá)物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度沿快速通道向乙地勻速行駛, 快遞車到達(dá)乙地后,卸完物資并另裝貨物共用了 45 分鐘,然后按原路以另一速度返回,直至與貨車相遇.已知貨車行駛速度為 60 km/h,兩車間的距離 y(km) 與貨車行駛時(shí)間 x(h) 之間的函數(shù)圖象如圖所示

給出以下四個(gè)結(jié)論:

快遞車從甲地到乙地的速度是 100 km/h;

、乙兩地之間的距離是 80 km;

圖中點(diǎn) B 的坐標(biāo)為 ( , 35);

快遞車從乙地返回時(shí)的速度為 90 km/h.

其中正確的是_____填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x(x-6)=0的根是(

A. x1=0,x2=-6 B. x1=0,x2=6 C. x=6 D. x=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為△ABC的中線,BE為三角形ABD中線.

(1)在△BED中作BD邊上的高EF;
(2)若△ABC的面積為40,BD=5,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案