【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣2,0),B(0, ),C(4,0),其對稱軸與x軸交于點D,若P為y軸上的一個動點,連接PD,PB+PD的最小值為________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用36000元購進(jìn)甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進(jìn)價120元,售價138元;乙種商品每件進(jìn)價100元,售價120元.
(1)該商場購進(jìn)甲、乙兩種商品各多少件?
(2)商場第二次以原進(jìn)價購進(jìn)甲、乙兩種商品,購進(jìn)乙種商品的件數(shù)不變,而購進(jìn)甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,△ABC各頂點的坐標(biāo)分別為:A(4,0),B(﹣1,4),C(﹣3,1)
(1)在圖中作△A′B′C′使△A′B′C′和△ABC關(guān)于x軸對稱;
(2)寫出點A′B′C′的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2分別與x軸、y軸相交于點A、點B
(1)求點A和點B的坐標(biāo);
(2)若點P是y軸上的一點,設(shè)△AOB、△ABP的面積分別為S△AOB與S△ABP,且S△ABP=2S△AOB,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+b與拋物線y=x2+x+c相交于點A(6,8)與點B,P是線段AB的中點,D是拋物線上的一個動點,直線DP交x軸于點C.
(1)分別求出這兩個函數(shù)的關(guān)系式,并寫出點B,P的坐標(biāo).
(2)四邊形ACBD能否成為平行四邊形?若能,請求出線段OC的長度;若不能,請說明理由.
(3)當(dāng)點D的坐標(biāo)為(4,2)時,△APD是什么特殊三角形?請說明理由,并寫出所有符合這一特殊性的點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CF⊥AB,垂足為F,M為BC的中點,E為AC上一點,且ME=MF.若∠A=50°,則∠FME的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點的坐標(biāo)分別是A(﹣3,0),B(﹣6,﹣2),C(﹣2,﹣5).將△ABC向上平移5個單位長度,再向右平移8個單位長度,得到△A1B1C1.
(1)寫出點A1,B1,C1的坐標(biāo);
(2)在平面直角坐標(biāo)系xOy中畫出△A1B1C1;
(3)求△A1B1C1的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com