【題目】某電器經(jīng)營業(yè)主兩次購進一批同種型號的掛式空調(diào)和電風扇,第一次購進8臺空調(diào)和20臺電風扇;第二次購進10臺空調(diào)和30臺電風扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風扇每臺的采購價各是多少元?
在的條件下,若該業(yè)主計劃再購進這兩種電器70臺,而可用于購買這兩種電器的資金不超過30000元,問該經(jīng)營業(yè)主最多可再購進空調(diào)多少臺?
【答案】掛式空調(diào)每臺的采購價是1800元,電風扇每臺的采購價是150元;該經(jīng)營業(yè)主最多可再購進空調(diào)11臺.
【解析】
(1)設掛式空調(diào)每臺的采購價是x元,電風扇每臺的采購價是y元,根據(jù)采購價格=單價×數(shù)量,可列出關(guān)于x、y的二元一次方程組,解方程組即可得出結(jié)論;(2)設再購進空調(diào)a臺,則購進風扇(70﹣a)臺,根據(jù)采購價格=單價×數(shù)量,可列出關(guān)于a的一元一次不等式,解不等式即可求解.
設掛式空調(diào)每臺的采購價是x元,電風扇每臺的采購價是y元,
根據(jù)題意,得,
解.
答:掛式空調(diào)每臺的采購價是1800元,電風扇每臺的采購價是150元.
設再購進空調(diào)a臺,則購進風扇臺,
由已知,得,
解得:,
故該經(jīng)營業(yè)主最多可再購進空調(diào)11臺.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,過點(x1 , 0),﹣3<x1<﹣2,對稱軸為直線x=﹣1.給出四個結(jié)論:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD、等邊△ACE、等邊△BCF.證明四邊形DAEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:
設a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn,
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)
(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,T與h之間在一定范圍內(nèi)近似地成一次函數(shù)關(guān)系.
(1)根據(jù)下表,求T(℃)與h(km)之間的函數(shù)關(guān)系式;
溫度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)當巖層溫度達到1770℃時,巖層所處的深度為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價各是多少?
(2)根據(jù)學校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com