如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)設(shè)AD=b,BD=a,且AC=
5
,DE=
6
,求ab的值.
分析:(1)由等腰直角三角形的性質(zhì)可知BC=AC,CD=CE,∠ACB=∠ECD=90°,通過等量減等量即可推出∠ACE=∠BCD,根據(jù)全等三角形的判定定理“SAS”,即可退出結(jié)論;
(2)根據(jù)(1)中所推出的結(jié)論可知,BD=AE,∠CAE=∠B=45°,然后根據(jù)等腰直角三角形的性質(zhì)推出∠CAB=45°,即可推出EA⊥BA,即△EAD為直角三角形,再根據(jù)勾股定理即可推出AE2+AD2=DE2,即AD2+BD2=DE2,問題得解.
解答:證明(1)∵△ABC和△ECD都是等腰直角三角形,
∴BC=AC,CD=CE,
∠ACB=∠ECD=90°,
∴∠ACB-∠ACD=∠ECD-∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
BC=AC
∠ACE=∠BCD
CD=CE
,
∴△ACE≌△BCD(SAS);

(2)∵△ACE≌△BCD,
∴BD=AE,
∠CAE=∠B=45°∠ACE=∠BCD,
∴∠DAE=∠BAC+∠EAC=45°+45°=90°,
∴在Rt△ADE中AD2+AE2=DE2
∴AD2+BD2=DE2,
∵AD=b,BD=a,DE=
6

∴a2+b2=6,
∵a+b=5,
∴ab=
19
2
點(diǎn)評:本題主要考查全等三角形的判定及性質(zhì),勾股定理,等腰直角三角形性質(zhì),關(guān)鍵在于認(rèn)真的閱讀題目,正確的運(yùn)用相關(guān)的性質(zhì)定理求證三角形全等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點(diǎn),連AD,BE,F(xiàn)為線段AD的中點(diǎn),連CF,
(1)如圖1,當(dāng)D點(diǎn)在BC上時(shí),BE與CF的數(shù)量關(guān)系是
 
,位置關(guān)系是
 
,請證明.
精英家教網(wǎng)
(2)如圖2,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請證明.如果不成立,請寫出相應(yīng)的正確的結(jié)論并加以證明.
(3)如圖3,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點(diǎn)C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點(diǎn)
A
是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
45
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD

(2)請?zhí)骄緽M與DM的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點(diǎn)F,連接BD交 CE于點(diǎn)G,連接BE.下列結(jié)論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為
2
10
2
10
.(只填結(jié)果,不用寫出計(jì)算過程)

查看答案和解析>>

同步練習(xí)冊答案