【題目】如圖,△ ABC中,ABBCM、NBC邊上的兩點(diǎn),并且∠BAM∠CAN,MNAN,則∠MAC    度.

【答案】60

【解析】

設(shè)∠CAN=x∠MAN=y,先表示出∠C2x+y,根據(jù)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和求出∠ANM,再根據(jù)等邊對(duì)等角的性質(zhì)求出∠AMN=∠MAN,然后利用三角形的內(nèi)角和定理列式求出x+y的度數(shù),也就是∠MAC的度數(shù).

解:設(shè)∠CAN=x,∠MAN=y,

∵AB=BC,∠BAM=∠CAN,

∴∠C=∠BAC=2x+y,

∴∠ANM=x+2x+y=3x+y,

∵M(jìn)N=AN,

∴∠AMN=∠MAN

△AMN中,2y+3x+y=180°

解得x+y=60°

∠MAC=60°

故填60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BCEF

(1)若兩個(gè)三角形按圖2方式放置,AC、DF交于點(diǎn)O,連接AD、BO,則AFCD的數(shù)量關(guān)系為   ,BOAD的位置關(guān)系為   ;

(2)若兩個(gè)三角形按圖3方式放置,其中C、B(D)、F在一條直線上,連接AE,MAE中點(diǎn),連接FM、CM.探究線段FMCM之間的關(guān)系,并證明;

(3)若兩個(gè)三角形按圖4方式放置,其中B、C(D)、F在一條直線上,點(diǎn)G、H分別為FCAC的中點(diǎn),連接GH、BE交于點(diǎn)K,求證:BKEK

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線交AC的延長線于點(diǎn)E,DE=4,CE=2.

(1)求證:DE⊥AE;

(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分現(xiàn)有5個(gè)質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字﹣1,﹣2,1,2,3先將標(biāo)有數(shù)字﹣2,1,3的小球放在第一個(gè)不透明的盒子里,再將其余小球放在第二個(gè)不透明的盒子里現(xiàn)分別從兩個(gè)盒子里各隨即取出一個(gè)小球

1請(qǐng)利用列表或畫樹狀圖的方法表示取出的兩個(gè)小球上數(shù)字之和所有可能的結(jié)果;

2求取出的兩個(gè)小球上的數(shù)字之和等于0的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B-20),點(diǎn)C80),與y軸交于點(diǎn)A

1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

3)連接OM,在(2)的結(jié)論下,求OMAC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來表示.已知大棚在地面上的寬度OA8米,距離O點(diǎn)2米處的棚高BC米.

(1)求該拋物線的函數(shù)關(guān)系式;

(2)若借助橫梁DE建一個(gè)門,要求門的高度不低于1.5米,則橫梁DE的寬度最多是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=C,AB=8厘米,BC=6厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).

1)用的代數(shù)式表示PC的長度;

2)若點(diǎn)PQ的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,BPDCQP是否全等,請(qǐng)說明理由;

3)若點(diǎn)PQ的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=DAE=40°,試探究線段BDCE的數(shù)量關(guān)系與直線BDCE相交構(gòu)成的銳角的度數(shù).

1)如圖①,當(dāng)點(diǎn)DE分別在△ABC的邊AB,AC上時(shí),BDCE的數(shù)量關(guān)系是___________,直線BDCE相交構(gòu)成的銳角的度數(shù)是_____________.

2)將圖①中△DAE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度到圖②的位置,則(1)中的兩個(gè)結(jié)論是否仍然成立?說明理由.

3)將圖②中△DAE繼續(xù)繞點(diǎn)A按逆時(shí)針方向繼續(xù)旋轉(zhuǎn)到點(diǎn)D落在CA的延長線時(shí),請(qǐng)畫出圖形,并直接寫出(1)中的兩個(gè)結(jié)論是否仍然成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案