17.如圖,E為?ABCD的邊AB延長線上的一點(diǎn),且BE:AB=2:3,△BEF的面積為4,則?ABCD的面積為( 。
A.30B.27C.14D.32

分析 用相似三角形的面積比等于相似比的平方,以及面積的和差求解.

解答 解:∵四邊形ABCD是平行四邊形,
∴AB=CD,CD∥AB,BC∥AB,
∴△BEF∽△AED,
∵$\frac{BE}{AB}=\frac{2}{3}$,
∴$\frac{BE}{AE}=\frac{2}{5}$,
∴$\frac{{S}_{△BEF}}{{S}_{△AED}}=(\frac{2}{5})^{2}=\frac{4}{25}$,
∵△BEF的面積為4,
∴S△AED=25,
∴S四邊形ABFD=S△AED-S△BEF=21,
∵AB=CD,$\frac{BE}{AB}=\frac{2}{3}$,
∴$\frac{BE}{CD}=\frac{2}{3}$,
∵AB∥CD,
∴△BEF∽△CDF,
∴$\frac{{S}_{△BEF}}{{S}_{△CDF}}=(\frac{BE}{CD})^{2}=(\frac{2}{3})^{2}=\frac{4}{9}$,
∴S△CDF=9,
∴S平行四邊形ABCD=S四邊形ABFD+S△CDF=21+9=30,
故選A.

點(diǎn)評(píng) 此題是相似三角形的性質(zhì)和判定,主要考查了平行四邊形的性質(zhì),相似三角形的性質(zhì),解本題的關(guān)鍵是掌握相似三角形的面積比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.一項(xiàng)工程,甲隊(duì)獨(dú)做需20天完成,乙隊(duì)獨(dú)做30天完成,若甲隊(duì)獨(dú)做8天,乙隊(duì)再做3天,剩下的甲乙兩隊(duì)合做,還需幾天完成?設(shè)還需x天完成,依題意可列方程( 。
A.$\frac{8+x}{20}$+$\frac{3+x}{30}$=1B.$\frac{x}{20}$+$\frac{x}{30}$=1C.$\frac{8}{20}$+$\frac{3+x}{30}$=1D.$\frac{8+x}{x}$+$\frac{3+x}{30}$=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.先化簡,再求值.
(1-$\frac{3}{x+1}$)$÷\frac{{x}^{2}-4}{x+1}$,其中x是方程x2-5x+6=0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.計(jì)算:|-8|+(-2)3+tan45°-$\sqrt{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.(-1)2016+2•cos60°-(-$\frac{1}{2}$)-2+($\sqrt{3}-\sqrt{2}$)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△DEC,則AE的長是$\sqrt{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.已知:如圖直線AB與CD相交于點(diǎn)O,OE⊥AB,∠COE=60°,則∠BOD等于30度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2017屆廣東省佛山市順德區(qū)九年級(jí)第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是( 。

A. (3,1) B. (3,﹣1) C. (﹣3,1) D. (﹣3,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.矩形ABCD中,AB=5,BC=12,對(duì)角線AC,BD交于點(diǎn)O,E,F(xiàn)分別為AB,AO中點(diǎn),則線段EF=$\frac{13}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案