(2007•宜賓)已知:如圖,在平面直角坐標系xoy中,一次函數(shù)y=x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求S△A´BC:S△ABO的值.

【答案】分析:(1)依題意求出點A,B坐標,求出|OA|=4,|OB|=3,求出點A′,B′的坐標,用待定系數(shù)法求解析式;
(2)聯(lián)立直線AB,直線A′B′的解析式求出點C坐標,然后求出S△A′BC,S△ABO的面積.
解答:解:(1)根據(jù)y=x+3,解得點坐標A(-4,0),B(0,3),即OA=4,OB=3,
∴OA′=OA=4,OB′=OB=3,
∴A′(0,4),B′(3,0),
設直線A′B′的解析式為y=kx+b,則,解得,
∴直線A′B′的解析式為y=-+4;

(2)解方程組
求得兩直線交點坐標,得C(,),
∴S△A′BC=1×=,S△ABO=4×3×=6,
=
點評:本題考查的是一次函數(shù)的綜合運用以及三角形面積計算,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,在平面直角坐標系xoy中,一次函數(shù)y=x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求S△A´BC:S△ABO的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2007•宜賓)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點C、F為頂點作矩形CDEF,頂點D、E在⊙O的劣弧上,OM⊥DE于點M.試求圖中陰影部分的面積.(結果保留π)

查看答案和解析>>

同步練習冊答案