如圖,直線軸、軸分別相交于點(diǎn) 、.拋物線軸的正半軸相交于點(diǎn),與這個(gè)一次函數(shù)的圖像相交于、,且

(1) 求點(diǎn) 、、的坐標(biāo);

(2)如果,求拋物線的解析式.

 

【答案】

(1),0),(0,1),(0,3)(2)

【解析】(1),0),(0,1),,    在Rt△中,∵, =,

        ∴=

∴點(diǎn)的坐標(biāo)(0,3).

(2)當(dāng)點(diǎn)延長線上時(shí),

(0,1),

,

 ,

∴△∽△.  

,

,

.  

   過點(diǎn)軸,垂足為,

 //

,

∴點(diǎn)的坐標(biāo)為(4,5).  

設(shè)二次函數(shù)的解析式為,∴ 

∴二次函數(shù)解析式為.   

當(dāng)點(diǎn)在射線上時(shí),同理可求得點(diǎn), 

二次函數(shù)解析式為. 

評分說明:過點(diǎn),當(dāng)點(diǎn)延長線上或點(diǎn)在射線上時(shí),可用銳角三角比等方法得(1分),(1分),另外分類有1分其余同上.

(1)設(shè)一次函數(shù)中的y=0,求出x的值,即A的橫坐標(biāo),設(shè)x=0,求出y的值即B的縱坐標(biāo),再利用已知條件和勾股定理求出OC的長,即C的縱坐標(biāo);

(2)因?yàn)槿绻螩DB=∠ACB,則D點(diǎn)的位置不確定,因此小題需要分①當(dāng)點(diǎn)D在AB延長線上時(shí),②當(dāng)點(diǎn)D在射線BA上時(shí),兩種情況討論,求出滿足題意的拋物線y=ax2+bx+c的解析式即可.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)如圖 ,直線軸的交點(diǎn)坐標(biāo)為A(0,1),與軸的交點(diǎn)坐標(biāo)為B(-3,0);P、Q分別是軸和直線AB上的一動(dòng)

點(diǎn),在運(yùn)動(dòng)過程中,始終保持QA=QP;△APQ沿
直線PQ翻折得到△CPQ,A點(diǎn)的對稱點(diǎn)是點(diǎn)C.
(1)求直線AB的解析式.
(2)是否存在點(diǎn)P,使得點(diǎn)C恰好落在直線AB
上?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,
請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點(diǎn),OA、OB的長分別是關(guān)于x的方程x2﹣14x+4(AB+2)=0的兩個(gè)根(OB>OA),P是直線l上A、B兩點(diǎn)之間的一動(dòng)點(diǎn)(不與A、B重合),PQ∥OB交OA于點(diǎn)Q
【小題1】求tan∠BAO的值
【小題2】若SPAQ=S四邊形OQPB時(shí),請確定點(diǎn)P在AB上的位置,并求出線段PQ的長;
【小題3】當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(帶解析) 題型:解答題

(本題12分)
如圖,直線軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個(gè)長度單位的速度向原點(diǎn)O運(yùn)動(dòng). 動(dòng)直線EF從軸開始以每秒1個(gè)長度單位的速度向上平行移動(dòng)(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積;
(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

(本題12分)

如圖,直線軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個(gè)長度單位的速度向原點(diǎn)O運(yùn)動(dòng). 動(dòng)直線EF從軸開始以每秒1個(gè)長度單位的速度向上平行移動(dòng)(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積;

(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?

(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請證明你的判斷.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué) 題型:解答題

(11·漳州)(滿分14分)如圖1,拋物線ymx2-11mx+24m (m<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.

(1)填空:OB_   ▲   ,OC_   ▲   ;

(2)連接OA,將△OAC沿x軸翻折后得△ODC,當(dāng)四邊形OACD是菱形時(shí),求此時(shí)拋物線的解析式;

(3)如圖2,設(shè)垂直于x軸的直線lxn與(2)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上AC兩點(diǎn)之間時(shí),試探究:當(dāng)n為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案