【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=6,求菱形的面積.
【答案】(1)證明見解析;(2)24
【解析】試題(1)首先證明△ABC是等邊三角形,進而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;
(2)利用勾股定理得出AE的長,進而求出菱形的面積.
試題解析:(1)∵四邊形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等邊三角形,
∵E是BC的中點,
∴AE⊥BC,
∴∠AEC=90°,
∵E、F分別是BC、AD的中點,
∴AF=AD,EC=BC,
∵四邊形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四邊形AECF是平行四邊形,
又∵∠AEC=90°,
∴四邊形AECF是矩形;
(2)在Rt△ABE中,AE=,
所以,S菱形ABCD=6×3=18.
科目:初中數(shù)學 來源: 題型:
【題目】下表給出了某班6名同學的身高情況(單位:cm).
學生 | A | B | C | D | E | F | |
身高(單位:cm) | 165 | ____ | 166 | ____ | ____ | 172 | |
身高與班級平 | 均身高的差值) | -1 | +2 | ____ | -3 | +4 | ____ |
(1)完成表中空的部分;
(2)他們6人中最高身高比最矮身高高多少?
(3)如果身高達到或超過平均身高時叫達標身高,那么這6名同學身高的達標率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線,則圖中的等腰三角形有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BC,DE=EF,AE=EC,則圖中的四邊形ADCF是__,四邊形BCFD是__.(選填“平行四邊形、矩形、菱形、正方形”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果關(guān)于x的不等式組 的解集為x>1,且關(guān)于x的分式方程 + =3有非負整數(shù)解,則符合條件的m的所有值的和是( )
A.﹣2
B.﹣4
C.﹣7
D.﹣8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】萬州某運輸公司的一艘輪船在長江上航行,往返于萬州、朝天門兩地。假設(shè)輪船在靜水中的速度不變,長江的水流速度不變,該輪船從萬州出發(fā),逆水航行到朝天門,停留一段時間(卸貨、裝貨、加燃料等,)又順水航行返回萬州,若該輪船從萬州出發(fā)后所用時間為x(小時),輪船距萬州的距離為y(千米),則下列各圖中,能反映y與x之間函數(shù)關(guān)系的圖象大致是【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,Rt△ABC中,∠C=90°,AC=3,BC=4.點D是AB邊上任意一點,則CD的最小值為 。
(2)如圖②,在矩形ABCD中,AB=3,BC=4.點M、N分別在BD、BC上。求CM+MN的最小值.
(3)如圖③,在矩形ABCD中,AB=3,BC=4.點E是AB邊上的一點,且AE=2,點F是BC邊上的任意一點。把△BEF沿EF翻折,點B對應點G,連接AG、CG.四邊形AGCD的面積的最小值是 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P的坐標為(a,b),點P的“變換點”P`的坐標定義如下:當時,P`點坐標為(a,-b);當時,P`點坐標為(b,-a)。線段l:上所有點按上述“變換點”組成一個新的圖形,若直線與組成的新的圖形有兩個交點,則k的取值范圍是( )
A. B. 或 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com