【題目】如圖,正方形紙片的邊長為5,E是邊的中點,連接.沿折疊該紙片,使點B落在F點.則的長為______________________

【答案】

【解析】

根據(jù)折疊的性質(zhì)結(jié)合三角形外角的性質(zhì)可證得AEFC,利用勾股定理求得的長,根據(jù)RtEBGRtEAB,即可求得的長,根據(jù)三角形中位線的性質(zhì)即可求解.

根據(jù)折疊的性質(zhì),△ABEBFE,AE垂直平分BF,且E是邊BC的中點,

BE=EF=EC,∠BEA=FEA,

∴∠EFC=ECF

∵∠BEF =BEA+FEA=EFC+ECF,

∴∠BEA=ECF,

AEFC,

∵四邊形是邊長為5的正方形,且E是邊BC的中點,

∴∠ABC=90,AB=5BE=,

,

連接BFAE于點G,如圖:

AE垂直平分BF,

∴∠BGE=90,

RtEBGRtEAB

,即,

,

GEFC,E是邊BC的中點,

CF=2GE=,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】前線醫(yī)護人員和全國人民的共同努力下,疫情得到了有效控制,寧波各大企業(yè)復(fù)工復(fù)產(chǎn)有序進行.為了實現(xiàn)員工一站式返崗,寧波某企業(yè)打算租賃5輛客車前往寧波東站接員工返崗.已知現(xiàn)有AB兩種客車,A型客車的載客量為45/輛,每輛租金為400元;B型客車的載客量為30/輛,每輛租金為280元.設(shè)租用A型客車為x輛,所需費用為y元.

1)求y關(guān)于x的函數(shù)解析式;

2)若該企業(yè)需要接的員工有205人,請求出租車費用最小值,并寫出對應(yīng)的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點坐標(biāo)為(3,8),該二次函數(shù)圖像的對稱軸與軸的交點為A,M是這個二次函數(shù)圖像上的點,是原點

1)不等式是否成立?請說明理由;

2)設(shè)AMO的面積,求滿足的所有點M的坐標(biāo).

3)將(2)中符號條件的點M聯(lián)結(jié)起來構(gòu)成怎樣的特殊圖形?寫出兩條這個特殊圖形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的高, 直角的頂點是射線上一動點, 交直線于點所在直線交直線于點F

1)判斷ABC的形狀,并說明理由;

2)若GAE的中點,求tanEAF的值;

3)在點E的運動過程中,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校初中學(xué)生在學(xué)校號召的積極公益活動中周末參加公益的時間(單位:h),隨機調(diào)查了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受調(diào)查的初中學(xué)生人數(shù)為________,圖①中m的值為________;

(2)求統(tǒng)計的這部分學(xué)生參加公益的時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)統(tǒng)計的這部分學(xué)生周末參加公益時間的樣本數(shù)據(jù),若該校共有650名初中學(xué)生,估計該校在這個周末參加公益時間大于1h的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,與x軸交于兩點AB(點A在點B的左側(cè)),與y軸交于點C

(Ⅰ)求點A,B和點C的坐標(biāo);

(Ⅱ)已知P是線段上的一個動點.

①若軸,交拋物線于點Q,當(dāng)取最大值時,求點P的坐標(biāo);

②求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,直線與反比例函數(shù)在第一象限的圖象交于點、點,其中點的坐標(biāo)為(1n

1)求反比例函數(shù)解析式;

2 連接 的面積;

3)根據(jù)圖象,直接寫出當(dāng)時不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知拋物線x軸交于A、B兩點,與y軸負(fù)方向交于C點,且

1)試求出拋物線的解析式;

2E為直線上.動點,F為拋物線對稱軸上一點,當(dāng)F點在對稱軸上何處時,四邊形ACFE的周長最短,并求出此時四邊形的周長;

3)如圖(2),x軸上一點,拋物線上x軸的上方是否存在點P,使得線段AP與直線CD相交且它們的夾角為45°,若存在這樣的P點,請求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,DAB上的動點,將線段CD繞點C逆時針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是(

A.-1B.C.D.2

查看答案和解析>>

同步練習(xí)冊答案