【題目】如圖,在正方形ABCD中,AB=6,E為CD上一動(dòng)點(diǎn),AE交BD于F,過(guò)F作FH⊥AE交BC于點(diǎn)H,過(guò)H作HG⊥BD于G,連結(jié)AH.在以下四個(gè)結(jié)論中:①AF=HE;②∠HAE=45°;③FC=2;④△CEH的周長(zhǎng)為12.其中正確的結(jié)論有_____.
【答案】②④.
【解析】
①作輔助線,延長(zhǎng)HF交AD于點(diǎn)L,連接CF,通過(guò)證明△ADF≌△CDF,可得:AF=CF,故需證明FC=FH,可證:AF=FH;
②由FH⊥AE,AF=FH,可得:∠HAE=45°;
③F是動(dòng)點(diǎn),CF的長(zhǎng)度不是定值;
④作輔助線,延長(zhǎng)AD至點(diǎn)M,使AD=DM,過(guò)點(diǎn)C作CI∥HL,則IL=HC,可證AL=HE,再根據(jù)△MEC≌△MIC,可證:CE=IM,故△CEH的周長(zhǎng)為邊AM的長(zhǎng),為定值.
解:①連接FC,延長(zhǎng)HF交AD于點(diǎn)L,
∵BD為正方形ABCD的對(duì)角線,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALH+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.故①錯(cuò)誤,
②∵FH⊥AE,FH=AF,
∴∠HAE=45°.
③∵F是動(dòng)點(diǎn),CF的長(zhǎng)度不是定值,本選項(xiàng)錯(cuò)誤;
④延長(zhǎng)AD至點(diǎn)M,使AD=DM,過(guò)點(diǎn)C作CI∥HL,則:LI=HC,
根據(jù)△MEC≌△CIM,可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+IM=AM=12.
∴△CEH的周長(zhǎng)為12,為定值.
故②④結(jié)論都正確.
故答案為②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線y=x被⊙P截得的弦AB的長(zhǎng)為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=20 cm,P,Q,M,N分別從A,B,C,D出發(fā),沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.已知在相同時(shí)間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm,
(1)當(dāng)x為何值時(shí),點(diǎn)P,N重合;
(2)當(dāng)x為何值是,以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=的圖象如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,點(diǎn)B.C在函數(shù)圖象上,四邊形OBAC為菱形,且∠AOB=30,則點(diǎn)C的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A.B兩點(diǎn),且A點(diǎn)坐標(biāo)為(3,0),經(jīng)過(guò)B點(diǎn)的直線y=x-1交拋物線于點(diǎn)D.
(1)求B點(diǎn)坐標(biāo)和拋物線的解析式
(2)點(diǎn)D的坐標(biāo)
(3)過(guò)x軸上點(diǎn)E(a,0)(E點(diǎn)在B點(diǎn)的右側(cè))作直線EF∥BD,交拋物線于點(diǎn)F,是否存在實(shí)數(shù)a使四邊形BDFE是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=3x與反比例函數(shù)y=(k≠0)的圖象交于A(1,m)和點(diǎn)B.
(1)求m,k的值,并直接寫(xiě)出點(diǎn)B的坐標(biāo);
(2)過(guò)點(diǎn)P(t,0)(-1≤t≤1)作x軸的垂線分別交直線y=3x與反比函數(shù)y=(k≠0)的圖象于點(diǎn)E,F.
①當(dāng)t=時(shí),求線段EF的長(zhǎng);
②若0<EF≤8,請(qǐng)根據(jù)圖象直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,回答問(wèn)題:
如圖,
點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),以AB為斜邊作Rt△ABC,則C(x2,y1),于是,,所以,反之,可將代數(shù)式的值看作點(diǎn)(x1,y1)到點(diǎn)(x2,y2)的距離.
例如:
故代數(shù)式的值看作點(diǎn)(x,y)到點(diǎn)(1,-1)的距離.
已知:代數(shù)式
(1)該代數(shù)式的值可看作點(diǎn)(x,y)到點(diǎn) 、 的距離之和.
(2)求出這個(gè)代數(shù)式的最小值,
(3)在(2)的條件下求出此時(shí)y與x之間的函數(shù)關(guān)系式并寫(xiě)出x的值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作交AB于點(diǎn)F,連接DB交于點(diǎn)H,E是BC上的一點(diǎn),且,連接DE.
(1)求證:DE是的切線.
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)“垃圾分類”,環(huán)保部門要求垃圾要按A,B,C,D四類分別裝袋、投放,其中A類指廢電池,過(guò)期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料、廢紙等可回收物,D類指出其他垃圾,小明、小亮各投放了一袋垃圾.
(1)直接寫(xiě)出小明投放的垃圾恰好是A類的概率;
(2)求小亮投放的垃圾與小明投放的垃圾是同一類的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com