精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,l∥m,等邊△ABC的頂點B在直線m上,邊BC與直線m所夾銳角為20°,則∠α的度數為( )

A.60°
B.45°
C.40°
D.30°

【答案】C
【解析】過C作CE∥直線m

∵l∥m,
∴l(xiāng)∥m∥CE,
∴∠ACE=∠α,∠BCE=∠CBF=20°,
∵等邊△ABC,
∴∠ACB=60°,
∴∠α+∠CBF=∠ACB=60°,
∴∠α=40°.
故選C.


【考點精析】認真審題,首先需要了解平行線的性質(兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補),還要掌握三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點A(x,y),點B(xmy,mxy)(其中m為常數,且m≠0),則稱B是點A的“m族衍生點”.例如:點A(1,2)的“3族衍生點”B的坐標為(13×23×12),即B(5,1)

1)點(2,0)的“2族衍生點”的坐標為   

2)若點A的“3族衍生點”B的坐標是(1,5),則點A的坐標為   ;

3)若點A(x,0)(其中x≠0),點A的“m族衍生點“為點B,且ABOA,求m的值;

4)若點A(x,y)的“m族衍生點”與“﹣m族衍生點”都關于y軸對稱,則點A的位置在   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△ 的位置,點B,O分別落在點 , 處,點 軸上,再將△ 繞點 順時針旋轉到△ 的位置,點 軸上,將△ 繞點 順時針旋轉△ 的位置,點 軸上……依次進行下去。若點 ,B(0,2),則點 的坐標為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一段平直的公路上有三個城市,城在城和城之間,一輛慢車從城出發(fā)勻速開往城,與此同時一輛快車從城出發(fā)勻速開往城.當慢車到達城后立即以倍原速勻速返回到城.當快車到達城后,休息了半小時后再提高原速的的速度勻速開往城.下圖是慢車出發(fā)后的時間(小時)與兩車之間的距離(千米)之間的函數關系圖,慢車出發(fā)6小時后,兩車相距___________千米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四月江南黃鳥肥,櫻桃滿市粲朝輝,暮春時節(jié),重慶市櫻桃(俗稱思桃兒)早已進入采摘期.某現代農業(yè)園區(qū)推行免入園費自助采摘活動.該園區(qū)種植了普通櫻桃和烏皮櫻桃兩個品種,其中烏皮櫻桃甜味香,肉質細嫩,售價比普通櫻桃每斤高出20元.

1)今年430日,普通櫻桃銷量為200斤,烏皮櫻桃銷量為400斤,若當天總銷售額不低于26000元,則每斤普通櫻桃至少賣多少元?

2)為降低高溫天氣帶來的經濟損失,果園負責人決定在五一節(jié)推出優(yōu)惠政策,若兩種櫻桃在(1)的條件下均以最低價格銷售,51日,普通櫻桃售價降低,銷量比430日增加,烏皮櫻桃售價不變,銷量比430日增加了,且51日總銷售額比430日增加了.求的值.().

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線軸交于點,與軸交于點,,,分別以,為邊作矩形,直線于點,交直線于點

1)求直線的解析式及點的坐標.

2)如圖2,為直線上一動點,點,點為直線上兩動點(在上,在下),滿足,當最大時,求的最小值,并求出此時點的坐標.

3)如圖3,將繞著點順時針旋轉,記旋轉后的三角形為,線段所在的直線交直線于點不與、重合),交軸于點,在平面內是否存在一點,使得以四點形成的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A在函數(x>0)的圖象上,點B在直線(k為常數,且k0)上,若A,B兩點關于原點對稱,則稱點A,B為函數y1 , y2 圖象上的一對“友好點”.請問這兩個函數圖象上的“友好點”對數的情況為( )
A.只有1對或2對
B.只有1對
C.只有2對
D.只有2對或3對

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MNBC,設 MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F

1)求證:OEOF;

2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.

3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想ABC 的形狀并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,有一張菱形紙片ABCD,AC=8,BD=6.
請沿著AC剪一刀,把它分成兩部分,把剪開的兩部分拼成一個平行四邊形,在圖2中用實線畫出你所拼成的平行四邊形;若沿著BD剪開,請在圖3中用實線畫出拼成的平行四邊形.并直接寫出這兩個平行四邊形的周長.
沿著一條直線剪開,拼成與上述兩種都不全等的平行四邊形,請在圖4中用實線畫出拼成的平行四邊形.(注:上述所畫的平行四邊形都不能與原菱形全等)

查看答案和解析>>

同步練習冊答案