【題目】在下圖中,每個正方形點陣由大點和小點組成:
(1)第7個正方形點陣中,大點和小點的總共的個數(shù)是________其中大點的個數(shù)是_________.
(2)第n個圖形中,大點的個數(shù)是__________;(用含n的式子表示)
(3)是否存在某個圖形,使得大點的個數(shù)是210個?若存在,請求出n的值,若不存在,請說明理由.
【答案】(1)64;28;(2);(3)第20個圖形大點的個數(shù)是210個.
【解析】
(1)(2)可以通過列表找規(guī)律的方法,找出相應(yīng)的點的個數(shù);
(3)通過方程,求解即可.
(1)
依照題意,可得下表:
圖形 | 大點個數(shù) | 大點和小點的總共個數(shù) |
第1個 | 1 |
|
第2個 | 3=1+2 | |
第3個 | 6=1+2+3 | |
┄ | ┄ | ┄ |
第7個 | 1+2+3+4+5+6+7=28 |
(2)由(1)圖標(biāo)可知第n個圖形中,大點的個數(shù)是:
(3)當(dāng)大點的個數(shù)是210個時,即,
∴
解之得: 或(不合題意,舍去)
所以存在第20個圖形,使得大點的個數(shù)是210個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點、(點在點的左側(cè)),,經(jīng)過點的一次函數(shù)的圖象與軸正半軸交于點,且與拋物線的另一個交點為,的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點E的坐標(biāo);
(3)若點為軸上任意一點,在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運用有關(guān)知識即可解決這個問題.請你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( )
A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A以1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O以1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么,當(dāng)t為何值時,△POQ與△AOB相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如表:方程1、方程2、方程3、…是按一定規(guī)律排列的一列方程.
序號 | 方程 | 方程的解 | |
1 | x2+x﹣2﹣=0 | x1=﹣2 | x2=1 |
2 | x2+2x﹣8﹣=0 | x1=﹣4 | x2=2 |
3 | x2+3x﹣18=0 | x1= | x2= |
… | … | … | … |
(1)解方程3,并將它的解填在表中的空白處;
(2)請寫出這列方程中第10個方程,并用求根公式求其解.
(3)根據(jù)表中的規(guī)律寫出第n個方程和這個方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DE′F′G′,此時點G′在AC上,連接CE′,則CE′+CG′=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點A落在直角邊BC上,記落點為D,設(shè)折痕與AB、AC邊分別交于點E、F.
(1)如果∠AFE=65°,求∠CDF的度數(shù);
(2)若折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計算過程,并畫出符合條件的折疊后的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com