【題目】圖1、圖2中,點B為線段AE上一點,△ABC與△BED都是等邊三角形.
(1)如圖1,求證:AD=CE.
(2)如圖2,設CE與AD交于點F,連接BF.
①求證:∠CFA=60°.
②求證:CF+BF=AF.
【答案】(1)證明見解析;(2)①證明見解析;②證明見解析.
【解析】
(1)如圖1,利用等邊三角形性質(zhì)得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再證∠ABD=∠CBE,根據(jù)SAS證明△ABD≌△CBE得出結(jié)論;
(2)①如圖2,利用(1)中的全等得:∠BCE=∠DAB,根據(jù)兩次運用外角定理可得結(jié)論;
②如圖3,作輔助線,截取FG=CF,連接CG,證明△CFG是等邊三角形,并證明△ACG≌△BCF,由線段的和得出結(jié)論.
證明:(1)如圖1,∵△ABC與△BED都是等邊三角形,
∴BD=BE,AB=BC,∠ABC=∠DBE=60°,
∴∠ABC+∠CBD=∠DBE+∠CBD,
即∠ABD=∠CBE,
∴△ABD≌△CBE(SAS),
∴AD=CE,
(2)①如圖2,由(1)得:△ABD≌△CBE,
∴∠BCE=∠DAB,
∵∠ABC=∠BCE+∠CEB=60°,
∴∠ABC=∠DAB+∠CEB=60°,
∵∠CFA=∠DAB+∠CEB,
∴∠CFA=60°,
②如圖3,在AF上取一點G,使FG=CF,連接CG,
∵∠AFC=60°,
∴△CGF是等邊三角形,
∴∠GCF=60°,CG=CF,
∴∠GCB+∠BCE=60°,
∵∠ACB=60°,
∴∠ACG+∠GCB=60°,
∴∠ACG=∠BCE,
∵AC=BC,
∴△ACG≌△BCF,
∴AG=BF,
∵AF=AG+GF,
∴AF=BF+CF.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀并回答問題.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移項得:x2+x=﹣,第二步
兩邊同時加上()2,得x2+x+(____)2=﹣+()2,第三步
整理得:(x+)2=直接開方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解題過程是否有錯誤?若有,說明在第幾步,指明產(chǎn)生錯誤的原因,寫出正確的過程;若沒有,請說明上述解題過程所用的方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究活動一:
如圖1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的對稱中心,MN交AB于F,QM交AD于E,線段ME與線段MF的數(shù)量關系是 .(不必證明,直接給出結(jié)論即可)
探究活動二:
如圖2,將上題中的“正方形”改為“矩形”,且AB=mBC,其他條件不變(矩形ABCD和矩形QMNP,∠M=∠B,M是矩形ABCD的對稱中心,MN交AB于F,QM交AD于E),探究并證明線段ME與線段MF的數(shù)量關系;
探究活動三:
根據(jù)前面的探索和圖3,平行四邊形ABCD和平行四邊形QMNP中,若AB=mBC,∠M=∠B,M是平行四邊形ABCD的對稱中心,MN交AB于F,QM交AD于E,請?zhí)骄坎⒆C明線段ME與線段MF的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下面的證明過程補充完整.
已知:如圖,是的角平分線,點在上,點在延長線上,交于點,且.
求證:.
證明:在中,
( ).
又(已知),
.
是的角平分線,
( ).
(等量代換).
.
( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點A(1,2)和B(2,n),
(1)以原點O為位似中心畫出△A1B1O,使=;
(2)在y軸上是否存在點P,使得PA+PB的值最。咳舸嬖,求出P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標軸的兩個交點A、B,與x軸的另一個交點為C,頂點為D.
(1)求拋物線的解析式;
(2)畫出拋物線的圖象;
(3)在x軸上是否存在點N使△ADN為直角三角形?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ΔABC和ΔDCE均是等邊三角形,點B,C,E在同一條直線上,AE與CD交于點G,AC與BD交于點F,連接FG,則下列結(jié)論: ①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正確的結(jié)論為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E,點F為AC延長線上的一點,連接DF.
(1)求∠CBE的度數(shù);
(2)若∠F=25°,求證:BE∥DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關系:
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
(2)設第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com