【題目】已知:在矩形ABCD中,AD=2AB,點(diǎn)E在直線AD上,連接BE,CE,若BE=AD,則∠BEC的大小為_____度.
【答案】75或15
【解析】
分兩種情況:①當(dāng)點(diǎn)E在線段AD上時(shí),BE=AD,由矩形的性質(zhì)得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB= BE,證出∠AEB=30°,得出∠CBE=30°,即可得出結(jié)果;②點(diǎn)E在DA延長線上時(shí),BE=AD,同①得出∠AEB=30°,由直角三角形的性質(zhì)得出∠ABE=60°,求出∠CBE=90°+60°=150°,即可得出結(jié)果.
解:分兩種情況:
①當(dāng)點(diǎn)E在線段AD上時(shí),BE=AD,如圖1所示:
∵四邊形ABCD為矩形,
∴BC=AD=BE=2AB,∠BAE=90°,AD∥BC,
∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,
∴AB=BE,
∴∠AEB=30°,
∴∠CBE=30°,
∴∠BEC=∠CBE=(180°﹣30°)=75°;
②點(diǎn)E在DA延長線上時(shí),BE=AD,如圖2所示:
∵四邊形ABCD為矩形,
∴BC=AD=BE=2AB,∠ABC=∠BAE=∠BAD=90°,
∴BE=2AB,∠BEC=∠BCE,
∴AB=BE,
∴∠AEB=30°,
∴∠ABE=60°,
∴∠CBE=90°+60°=150°,
∴∠BEC=∠BCE=(180°﹣150°)=15°;
故答案為:75或15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線 y=ax2+bx+5 的頂點(diǎn)坐標(biāo)為(2,9),與 y 軸交于點(diǎn) A(0,5),與 x 軸交于點(diǎn) E、B(點(diǎn) E 在點(diǎn) B 的左側(cè)),點(diǎn) P 為拋物線上一點(diǎn).
(1)求該拋物線的解析式;
(2)過點(diǎn) A 作 AC 平行于 x 軸,交拋物線于點(diǎn) C,當(dāng)點(diǎn) P 在 AC 上方時(shí),作 PD平行于 y 軸交 AB 于點(diǎn) D,求使四邊形 APCD 的面積最大時(shí)點(diǎn) P 的坐標(biāo);
(3)設(shè) N 為 x 軸上一點(diǎn),當(dāng)以 A、E、N、P 為頂點(diǎn),AE 為一邊的四邊形是平行四邊形時(shí),求點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時(shí)數(shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測速.在l外取一點(diǎn)P,作PC⊥l,垂足為點(diǎn)C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時(shí)測得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,是對角線上一個(gè)動(dòng)點(diǎn),連結(jié),過作,,
,分別為垂足.
(1)求證:;
(2)①寫出、、三條線段滿足的等量關(guān)系,并證明;②求當(dāng),時(shí),的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+與反比例函數(shù)y=(x<0)的圖象交于A(-4,a)、B(-1,b)兩點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)求a 、b及k的值;
(2)連接OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別加工100個(gè)零件,甲第1個(gè)小時(shí)加工了10個(gè)零件,之后每小時(shí)加工30個(gè)零件.乙在甲加工前已經(jīng)加工了40個(gè)零件,在甲加工3小時(shí)后乙開始追趕甲,結(jié)果兩人同時(shí)完成任務(wù).設(shè)甲、乙兩人各自加工的零件數(shù)為(個(gè)),甲加工零件的時(shí)間為(時(shí)),與之間的函數(shù)圖象如圖所示.
(1)在乙追趕甲的過程中,求乙每小時(shí)加工零件的個(gè)數(shù).
(2)求甲提高加工速度后甲加工的零件數(shù)與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲、乙兩人相差12個(gè)零件時(shí),直接寫出甲加工零件的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在等腰三角形ABC中,120BAC180,ABAC,ADBC于點(diǎn)D,以AC為邊作等邊三角形ACE,ACE與ABC在直線AC的異側(cè),直線BE交直線AD于點(diǎn)F,連接FC交AE于點(diǎn)M.
(1)求EFC的度數(shù);
(2)求證:FE+FA=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P是BA延長線上一點(diǎn),CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足為D
(1)求證:PC是⊙O的切線;
(2)求證:;
(3)過點(diǎn)A作AE∥PC交⊙O于點(diǎn)E,交CD于點(diǎn)F,連接BE,若sin∠P=,CF=5,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com