【題目】國慶節(jié)期間某商場對顧客實行優(yōu)惠,規(guī)定如下:若一次購物不超過 300 元(含 300 元),按標價九折優(yōu)惠,若一次購物超過 300 元,但不超過 800 元(含 800 元),所有商品按標價給予八折優(yōu)惠,若一次購物超過 800 元,其中 800 元按八折優(yōu)惠之外,超過 800 元的部分給予六折優(yōu)惠.
(1)若某人一次購物貨款為x元(x>1000),打折后應付多少元?
(2)若某人兩次購物分別付款180 元和 1000 元,如果他合起來一次去購買同樣的商品,他還可以節(jié)約多少元?
【答案】(1) ;(2)60元.
【解析】
(1)分段計算,分別計算800元部分的應付款和超過 800 元的部分的應付款,相加即可;
(2)設(shè)付款180元和1000元的標價分別為x元、y元,由題意可判斷出x<300,y>1000,從而可以列方程解出x、y,再根據(jù)優(yōu)惠方法求出合起來一次去購買同樣的商品時的付款,再求解即可.
解:(1) 打折后應付款==
(2)設(shè)付款180元和1000元的標價分別為x元、y元,
顯然x<300,y>1000,x+y>1000,
由題意得,0.9x=180,,
解得x=200,y=1400,
所以合起來一次去購買同樣的商品標價為200+1400=1600元,
應付款:1600×0.6+160=400+196=1120元,
節(jié)約的錢數(shù)=180+1000-1120=60元;
答:他合起來一次去購買同樣的商品,他可以節(jié)約60元錢.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個坡角為40°的斜坡上有一棵樹BC,樹高4米.當太陽光AC與水平線成70°角時,該樹在斜坡上的樹影恰好為線段AB,求樹影AB的長.(結(jié)果保留一位小數(shù))
(參考數(shù)據(jù):sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖,已知它的底面形狀是正方形,高為12cm.
(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?
(2)若1平方米硬紙板價格為5元,則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An,在x軸上,點B1、B2、…Bn在直線y=x上,已知OA1=1,則OA2019的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A城氣象臺測得臺風中心在A城正西方向320 km的B處,以每小時40 km的速度向北偏東60°的BF方向移動,距離臺風中心200 km的范圍內(nèi)是受臺風影響的區(qū)域.
(1)A城是否受到這次臺風的影響?為什么?
(2)若A城受到這次臺風影響,那么A城遭受這次臺風影響有多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:是最小的兩位正整數(shù),且滿足,請回答問題:
(1)請直接寫出的值: ,= .
(2)在數(shù)軸上所對應的點分別為A、B、C ,點P為該數(shù)軸上的動點,其對應的數(shù)為,點P在點A與點C之間運動時(包含端點),則AP= ,PC= .
(3)在(1)(2)的條件下,若點M從A出發(fā),以每秒1個單位長度的速度向終點C移動,當點M運動到B點時,點N從A出發(fā),以每秒3個單位長度向C點運動,N點到達C點后,再立即以同樣的速度返回點A,設(shè)點M 移動時間為t秒,當點N開始運動后,請用含t的代數(shù)式表示M、N兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(0<t<4)s,解答下列問題:
(1)求證:△BEF∽△DCB;
(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;
(3)如圖2過點Q作QG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com